Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(900-2^2\right).\left(900-\left(-6\right)^2\right).\left(900-\left(-8\right)^2\right)...\left(900-\left(-88\right)^2\right)\left(900-\left(-900^2\right)\right)\\ =\left(900-2^2\right).\left(900-\left(-6\right)^2\right).....\left(900-\left(-30\right)^2\right)....\left(900-\left(-88\right)^2\right)\left(900-\left(-900\right)^2\right)\\ =\left(900-2^2\right)\left(900-\left(-6\right)^2\right)....\left(900-900\right)...\left(900-\left(-900\right)^2\right)\\ =\left(900-2^2\right)....0...\left(900-\left(-900\right)^2\right)\\ =0\)
So sánh \(5^{30}\) và \(25^{10}\)
\(5^{30}\) = \(5^{3.10}\) = \(\left(5^3\right)^{10}\) = \(15^{10}\)
\(25^{10}\) : Giữ nguyên lũy thừa này
Vì 15 < 25 nên \(15^{10}\) < \(25^{10}\)
\(\Rightarrow\) \(5^{30}\) < \(25^{10}\)
chúc bn hok tốt ~
So sánh \(5^{30}\) và \(25^{10}\)
\(5^{30}\) = \(5^{3.10}\) = \(\left(5^3\right)^{10}\) = \(15^{10}\)
\(25^{10}\) : Giữ nguyên lũy thừa này
Vì 15 < 25 nên \(15^{10}\) < \(25^{10}\)
Từ đấy \(\Rightarrow\) \(5^{30}\) < \(25^{10}\)
chúc bn hok tốt ~
\(\Leftrightarrow\left\{x^2-\left[6^2-\left(64-63\right)^3-7\cdot5\right]^3\right\}=1\)
\(\Leftrightarrow\left\{x^2-\left[36-1-35\right]^3\right\}=1\)
\(\Leftrightarrow x^2=1\Rightarrow x=1\)
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
\(M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(M=4+13\cdot\left(3^2+3^5+...+3^{98}\right)\)chia 13 dư 4
\(M=1+\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(M=1+40\cdot\left(3+...+3^{97}\right)\)chia 40 dư 1
\(8.6+288:\left(x-3\right)^2=50\)
\(\Rightarrow48+288:\left(x-3\right)^2=50\)
\(\Rightarrow288:\left(x-3\right)^2=50-48\)
\(\Rightarrow288:\left(x-3\right)^2=2\)
\(\Rightarrow\left(x-3\right)^2=288:2\)
\(\Rightarrow\left(x-3\right)^2=144\)
\(\Rightarrow x-3=144\) hoặc \(x-3=-144\)
\(\Rightarrow x=147\) \(\Rightarrow x=-141\)
tíc mình nha
\(8^3.4^6.2^9=\left(2^3\right)^3.\left(2^2\right)^6.2^9=2^{3.3}.2^{2.6}.2^9=2^9.2^{12}.2^9=2^{9+12+9}=2^{30}\)
jyfjhkgvj