K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

1) 

=a^4+2a^2+1-a^2

=(a^2+1)^2-a^2

=(a^2-a+1)(a^2+a+1)

2)

=a^4+4b^4-4a^2b^2

=(a^2+2b^2)^2-4a^2b^2

=(a^2-2ab+2b^2)(a^2+2ab+2b^2)

3)

=(8x^2+1)^2-16x^2

=(8x^2-4x+1)(8x^2+4x+1).

4)

=x^5+x^4+x^3-x^3+1

=x^2(x^2+x+1)-(x-1)(x^2+x+1)

=(x^2-x+1)(x^2+x+1)

5).

=x^7-x+x^2+x+1

=x(x^6-1)+x^2+x+1

=x(x^3-1)(x^3+1)+x^2+x+1

=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1

=(x^2+x+1)[(x^2-x)(x^3+1)+1]

6)

=x^8-x^2+x^2+x+1

=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1

Xong nhóm x^2+x+1 vào.

7)

=x^4-(2x-1)^2

=(x^2-2x+1)(x^2+2x-1)

8)

=(a^8+b^8)^2-a^8b^8

=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).

13 tháng 11 2019

1, a4 + a2 + 1 

= a4 + 2a2 + 1 - a2 

= (a2)2 + 2a2 + 1 - a2 

= (a2 + 1)2 - a2 

= (a2 + 1 - a)(a2 + 1 + a)

2, a4 + 4b4 

= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2 

= (a2 + 2b)2 - (ab)2 

= (a2 + 2b - ab)(a2 + 2b + ab)

3, 64x4 + 1 

= (8x2)2​ + 16x2​ + 1 - 16x2​ 

= (8x2 + 1)2​ - (4x)2​ 

= (8x2 + 1 - 4x)(8x2 + 1 + 4x)

4, x5 + x4 + 1 

= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1 

= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)

= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x3 - x + 1)

5, x7 + x2 + 1 

= x7 – x + x2 + x + 1

= x(x6 – 1) + (x2 + x + 1) 

= x(x3 – 1)(x3 + 1) + (x2 + x + 1)

= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1) 

= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]

= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)

6, x8 + x + 1 

= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1

= (x8 + x7 + x6) -  (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)

= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)

= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)

7, x4 - 4x2 + 4x - 1 

= x4 - (4x2 - 4x + 1)

= (x2)2 - (2x - 1)2

= (x2 - 2x + 1)(x2 + 2x - 1)

= (x - 1)2 (x2 + 2x - 1)

8, a16 + a8b8 + b16

=  (a16 + 2a8b8 + b16) - a8b8 

= (a8 + b8)2 - (a4b4)2

= (a8 + b8 - a4b4)(a8 + b8 + a4b4)

= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]

= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]

= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)

1: =(x+y-3x)(x+y+3x)

=(-2x+y)(4x+y)

2: =(3x-1-4)(3x-1+4)

=(3x+3)(3x-5)

=3(x+1)(3x-5)

3: =(2x)^2-(x^2+1)^2

=-[(x^2+1)^2-(2x)^2]

=-(x^2+1-2x)(x^2+1+2x)

=-(x-1)^2(x+1)^2

4: =(2x+1+x-1)(2x+1-x+1)

=3x(x+2)

5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]

=(2x^2+2)*4x

=8x(x^2+1)

6: =(5x-5y)^2-(4x+4y)^2

=(5x-5y-4x-4y)(5x-5y+4x+4y)

=(x-9y)(9x-y)

7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)

=(x^2+2xy+y^2)(x^2-y^2)

=(x+y)^3*(x-y)

8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)

=[(x-2y)^2-4][(x+2y)^2-36]

=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)

6 tháng 7 2017

1) Ta có : 2x+ 3x - 5

= 2x2 - 2x + 5x - 5

= 2x(x - 1) + 5(x - 1)

= (x - 1) (2x + 5) 

3) x2 + x - 6

= x2 + 2x - 3x - 6

= x(x + 2) - (3x + 6)

= x(x + 2) - 3(x + 2)

= (x - 3)(x + 2) 

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

13 tháng 7 2017

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)

\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)

\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)

\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)

\(\Leftrightarrow-16x-8=0\)

\(\Leftrightarrow-8\left(2x-1\right)=0 \)

\(\Rightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy   \(x=\frac{1}{2}\)