Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = x^(4)*y^(4)+x^(5)*y^(5)+x^(6)*y^(6)+x^(7)*y^(7)+x^(8)*y^(8)+x^(9)*y^(9)+x^(10)*y^(10) tại x=-1, y=1 nha
\(x-\frac{3}{8}=\frac{1}{6}-\frac{1}{5}\)
=> \(x-\frac{3}{8}=\frac{5}{30}-\frac{6}{30}=-\frac{1}{30}\)
=> \(x=-\frac{1}{30}+\frac{3}{8}\)
=> \(x=\frac{41}{120}\)
\(-\frac{7}{10}\left(x+\frac{1}{3}\right)=\frac{4}{5}\)
=> \(-\frac{7}{10}x-\frac{7}{30}=\frac{4}{5}\)
=> \(-\frac{7}{10}x=\frac{4}{5}+\frac{7}{30}=\frac{31}{30}\)
=> \(x=\frac{31}{30}:\left(-\frac{7}{10}\right)=\frac{31}{30}\cdot\left(-\frac{10}{7}\right)=-\frac{31}{21}\)
\(x-\frac{4}{3}=\frac{5}{6}\Rightarrow x=\frac{5}{6}+\frac{4}{3}=\frac{5}{6}+\frac{8}{6}=\frac{13}{6}\)
Thiếu đề
\(\frac{6}{5}+\left(x-\frac{2}{3}\right)=\frac{4}{7}\)
=> \(\frac{6}{5}+x-\frac{2}{3}=\frac{4}{7}\)
=> \(\frac{6}{5}+x=\frac{4}{7}+\frac{2}{3}=\frac{26}{21}\)
=> \(x=\frac{26}{21}-\frac{6}{5}=\frac{4}{105}\)
a, \(\frac{\left(5-2x\right)}{3}=\frac{\left(4x-1\right)}{-5}\)
\(\Leftrightarrow-5(5-2x)=3\left(4x-1\right)\)
\(\Leftrightarrow10x-25=12x-3\)
\(\Leftrightarrow10x-12x=25-3\)
\(\Leftrightarrow-2x=22\)
\(\Leftrightarrow x=-11\)
b, \(\frac{\left(12-3x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow\frac{3\left(4-x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow3(4-x)\left(4-x\right)=32.6\)
\(\Leftrightarrow(4-x)\left(4-x\right)=32.2\)
\(\Leftrightarrow(4-x)^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=8\\4-x=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=12\end{cases}}\)
c, \(\frac{\left(10-2x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow\frac{2\left(5-x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow2(5-x)\left(5-x\right)=27.6\)
\(\Leftrightarrow(5-x)\left(5-x\right)=27.3\)
\(\Leftrightarrow(5-x)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=9\\5-x=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=14\end{cases}}\)
a, \(\frac{5-2x}{3}=\frac{4x-1}{-5}\Leftrightarrow-25+10x=12x-3\Leftrightarrow-22-2x=0\Leftrightarrow x=-11\)
b, \(\frac{12-3x}{32}=\frac{6}{4-x}\Leftrightarrow\frac{12-3x}{32}=\frac{18}{12-3x}\)
\(\Leftrightarrow\left(12-3x\right)^2=576\Leftrightarrow12-3x=\pm2\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=\frac{14}{3}\end{cases}}\)
c, \(\frac{10-2x}{6}=\frac{27}{5-x}\Leftrightarrow\frac{10-2x}{6}=\frac{54}{10-2x}\)
\(\Leftrightarrow\left(10-2x\right)^2=324\Leftrightarrow10-2x=\pm18\)\(\Leftrightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
\(|x+\frac{1}{10}|+....+|x+\frac{9}{10}|=10x\left(1\right)\)
Ta có: \(|x+\frac{1}{10}|\ge0;\forall x\)
\(|x+\frac{2}{10}|\ge0;\forall x\)
........................................
\(|x+\frac{9}{10}|\ge0;\forall x\)
\(\Rightarrow|x+\frac{1}{10}|+...+|x+\frac{9}{10}|\ge0;\forall x\)
Mà \(|x+\frac{1}{10}|+...+|x+\frac{9}{10}|=10x\)
\(\Rightarrow10x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{10}\ge0\)
.................................
\(x+\frac{9}{10}\ge0\)
\(\Rightarrow|x+\frac{1}{10}|=x+\frac{1}{10}\)
...................................................
\(|x+\frac{9}{10}|=x+\frac{9}{10}\)
Thay vào (1) ta được ;
\(9x+\frac{55}{10}=11x\)
\(\Leftrightarrow11x-9x=\frac{55}{10}\)
\(\Leftrightarrow2x=\frac{55}{10}\)
\(\Leftrightarrow x=\frac{55}{20}\)
Vậy ...
Lê Tài Bảo Châu (toán học)Dòng 9 e thấy lạ
\(x\ge0\Rightarrow x+\frac{1}{10}\ge\frac{1}{10}\)chứ. Dòng 11 tương tự
c: \(=\dfrac{7}{23}\cdot\left(\dfrac{-4}{3}-\dfrac{5}{2}\right)=\dfrac{7}{23}\cdot\dfrac{-8-15}{6}\)
\(=\dfrac{7}{23}\cdot\dfrac{-23}{6}=-\dfrac{7}{6}\)
d: \(=\dfrac{5}{7}\left(23+\dfrac{1}{4}-13-\dfrac{1}{4}\right)=\dfrac{5}{7}\cdot10=\dfrac{50}{7}\)
e: \(=\dfrac{2^5\cdot3^3\cdot5^3}{2^3\cdot3^3\cdot2^2\cdot5^2}=5\)
i: \(=\dfrac{1}{3^{10}}\cdot3^{50}-\dfrac{2^{10}}{3^{10}}:\dfrac{4^5}{3^{10}}\)
\(=3^{40}-1\)
10x = 15y
15y = 6z => z = 15/6.y
Thay vào đẳng thức thứ 2 ta có: 15y - 5y +(15/6)y = 25 => (75/6).y = 25 => y = 2
Với y = 2 thay vào đẳng thức đầu ta có: 10x=15.2 => x = 3
15.2 = 6z => z = 5
Vậy x = 3; y = 2; z = 5
x = 3
\(\dfrac{6}{x}=\dfrac{10}{5}\)
=>\(x=6\cdot\dfrac{5}{10}\)
=>\(x=\dfrac{30}{10}=3\)