K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

\(6,8x-3,6x-3,2=-9,6\)

\(3,2x=-9,6+3,2\)

\(3,2x=-6,4\)

\(x=-2\)

vậy \(x=-2\)

học tôt Vũ Trà My 

26 tháng 11 2017

có ai ko, giúp mk với

20 tháng 6 2019

1a) \(\frac{5}{1,2}=\frac{-2,5}{x}\)

\(\Leftrightarrow5x=-3\)

\(\Leftrightarrow x=\frac{-3}{5}\)

 b) \(\frac{3,2+\left(-0,4\right)}{-x-3,6}=\frac{-0,75}{1,5}\)

\(\Leftrightarrow\frac{2,8}{-x-3,6}=\frac{-0,75}{1,5}\)

\(\Leftrightarrow4,2=0,75x+2,7\)

\(\Leftrightarrow0,75x=1,5\)

\(\Leftrightarrow x=2\)

2) \(\frac{1}{3}.\frac{5}{7}=\frac{2}{7}.\frac{5}{6}\)

Tỉ lệ thức lập được \(\frac{5}{21}=\frac{10}{42}\)

\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)

\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)

\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)

3 tháng 3 2020

Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)

=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)

=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)

\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)

<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)

<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)

<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)

<=> \(2^x=2^{49}\)

<=> x = 49.

14 tháng 12 2017

Chia cả hai vế cho 5^x: 
pt <=> (3/5)^x + (4/5)^x = 1 
- Ta nhận thấy x=2 là nghiệm của phương trình 
(3/5)^2 + (4/5)^2 = 1 
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình 
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1) 
(4/5)^x < (4/5)^2 (do 4/5<1) 
----------------------------------------... 
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt) 
=> Phương trình không có nghiệm khi x>2. 
+ Tương tự với x<2, phương trình không có nghiệm khi x<2. 

- Vậy phương trình có nghiệm duy nhất x=2.

14 tháng 12 2017

3^x+4^x=5^x vax=2

Thay x vao bieu thu ta co :

3^2+4^2=5^2

 Xong roi do

21 tháng 10 2017

xin lỗi mik mới lớp 6

30 tháng 10 2017

-4;-3;-2;-1 nha bạn.

2 tháng 8 2019

bạn phá dấu trị tuyệt đối rồi đổi vế rồi tìm

a﴿ Cả 2 vế không âm nên Bình phương 2 vế ta được:
|x + y|2 ≤ ﴾|x| + |y|﴿2
<=> ﴾x+y﴿﴾x+y﴿ ≤ ﴾|x| + |y|﴿. ﴾|x| + |y|﴿
<=> x2 + 2xy + y2 ≤ x2+ 2.|x||y| + y2
<=> xy ≤ |xy| Điều này luôn đúng với mọi x; y
Vậy bất đẳng thức đã cho đúng. Dấu "= " khi |xy| = xy <=> x; y cùng dấu

6 tháng 9 2017

Với mọi x,y thuộc Q ta luôn có x bé hơn hoặc bằng |y| và -y

=> x+ybes hơn hoặc bằng |x|+|y| và - x-ybes hơn hoặc bằng |x|+|y| hay x+y lớn hơn hoặc bằng -(|x|+|y|)

Do đó -(|x|+|y|) <_ x+y <_ |x|+|y|

Vậy (x+y) lớn hơn hoặc bằng |x|+|y|

29 tháng 8 2016

a/

\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)

\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)

+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z

+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z

b/

\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)

=> m=y

+

29 tháng 8 2016

cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha

11 tháng 6 2021

Vì a + b = 0 => a = -b

Ta có f(3) = a.32 + b.3 + c 

= 9a + 3b + c

= 9(-b) + 3b + c

= -6b + c

f(-2) = a.(-2)2 + b(-2) + c

= 4a - 2b + c 

= 4(-b) - 2b + c

= -6b + c

Khi đó f(3).f(-2) = (-6b + c)(-6b + c) = (-6b + c)2 \(\ge\)0 (đpcm)

11 tháng 6 2021

Xét đa thức \(f\left(x\right)=ax^2+bx+c\)

\(f\left(3\right)=9a+3b+c\)

\(f\left(-2\right)=4a-2b+c\)

\(\Rightarrow f\left(3\right)-f\left(-2\right)=9a+3b+c-\left(4a-2b+c\right)=9a+3b+c-4a+2b-c\)\(=5a+5b=5\left(a+b\right)=5.0=0\) (vì \(a+b=0\))

\(\Rightarrow f\left(3\right)=f\left(-2\right)\)

\(f\left(3\right).f\left(-2\right)=\left[f\left(3\right)\right]^2\)

\(\left[f\left(3\right)\right]^2\ge0\) nên \(f\left(3\right).f\left(-2\right)\ge0\)   (đpcm)