K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

5m²72m²=???m²

Máy bn giúp mình với làm ơn

16 tháng 4 2017

a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)

=>a+b/a-b=c+d/c-d

b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)

c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2

26 tháng 4 2019

Bài 1 :

a ) Vì tam giác ABC có chu vi bằng 24 

=> AB + AC + BC = 24

hay a + b + c = 24

Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5 

=> a/3 = b/4 = c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2

=> a = 6 ; b = 8 ; c = 10

b ) Vì a = 6 => a2 = 36

          b = 8 => b2 = 64

          c = 10 => c2 = 100

MÀ 100 = 36 + 64 hay c= a2 + b2

Xét tam giác ABC có  c= a2 + b2 ( cmt )

=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )

Vậy ...

26 tháng 4 2019

Bài 2 :

Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt

Khi đó :

\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )

\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có dpcm

b ) ( chứng minh tương tự )

30 tháng 5 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

\(\Rightarrow\frac{5a+5b}{5b}=\frac{5b\left(k+1\right)}{5b}=k+1\)

\(\frac{c^2+cd}{cd}=\frac{k^2d^2+kd^2}{kd^2}=\frac{kd^2\left(k+1\right)}{kd^2}=k+1\)

\(\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
 

\(\)\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1\)

\(\frac{c^2+cd}{cd}=\frac{c^2}{cd}+\frac{cd}{cd}=\frac{c}{d}+1\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)

\(\Rightarrowđpcm\)

24 tháng 6 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)

\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)

\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)

=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)

b)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)

=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)