Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B6:
Ta có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{cases}}\)
=> \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c\)
Mà theo đề bài \(5a-3b+2c=0\)
=> \(P\left(-1\right)+P\left(-2\right)=0\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
Thay vào ta được: \(P\left(-1\right).P\left(-2\right)=-P\left(-2\right).P\left(-2\right)=-P\left(-2\right)^2\le0\left(\forall a,b,c\right)\)
=> đpcm
B5:
Ta có:
P+Q+R
= 5x2y2-xy-2y3-y2+5x4-2x2y2-5xy+y3-3y2+2x4-x2y2+6xy+y3+6y2+7
= x2y2+2y2+7x4+7
Mà \(x^2y^2\ge0;2y^2\ge0;7x^4\ge0\left(\forall x,y\right)\)
=> \(x^2y^2+2y^2+7x^4+7\ge7\)
=> Tổng 3 đa thức P,Q,R luôn dương
=> Trong 3 đa thức đó luôn tồn tại 1 đa thức lớn hơn 0
=> đpcm
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)
Các phần sau làm tương tự nhé
a) Ta có: \(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{2x+y}{4+3}=\dfrac{3}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7}.2\Leftrightarrow x=\dfrac{6}{7}\\y=\dfrac{3}{7}.3\Leftrightarrow x=\dfrac{9}{7}\end{matrix}\right.\)
a)5x=6y=20z=>\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\) và x-y-z=3
Áp dụng t/c của dãy tỉ số bàng nhau ta có:
\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\)=\(\frac{x-y-z}{12-10-3}=\frac{3}{-1}=-3\)
=>x=(-3).12=-36
y=(-3).10=-30
z=(-3).3=-9
b)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)và x+y+z=-120
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{33+4+5}=-\frac{120}{42}=-\frac{20}{7}\)
=>x=-30/7 . 33 =-990/7
y=-20/7 . 4=-80/7
z=-20/7 . 5=-100/7
a) Theo đề được: \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}=\frac{x-y-z}{\frac{1}{5}-\frac{1}{6}-\frac{1}{20}}=\frac{3}{-\frac{1}{60}}=-180\)
\(\frac{x}{\frac{1}{5}}=5x=-180\Rightarrow x=-180:5=-36\)
6y=-180 => y= - 30
20z = -180 => z = -9
b) Đề sai
\(\frac{x}{y}=\frac{6}{5}\)
=> 6y = 5x
Khi đó P = \(\frac{5x-6y}{2x-y}=\frac{0}{2x-y}=0\)(Vì 5x = 6y)
\(P=\frac{5x-6y}{2x-y}\)với \(\frac{x}{y}=\frac{6}{5}\)
Theo bài ra ta có : \(\Leftrightarrow5x=6y\)
hay : \(\frac{5x-6y}{2x-y}=\frac{0}{2x-y}=0\)( vì \(5x=6y\))