Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(5^{20}:\left(5^{15}.6+5^{15}+19\right)\)
=\(5^{20}:[5^{15}\left(6+19\right)\)
=\(5^{20}:[5^{15}.25]\)
=\(5^{20}:5^{15}.5^2\)
=\(5^3\)
520 : ( 515 . 6 + 515 + 19 )
= 520 : [ 515. ( 6 + 9 ) ]
= 520 : [ 515 . 15 ]
= 520 : 515 . 15
= 55 . 15
= 3125 . 15
= 46875
\(5^{20}:\left(5^{15}\cdot6+5^{15}\cdot19\right)\)
\(=5^{20}:\left[5^{15}\left(6+19\right)\right]\)
\(=5^{20}:\left(5^{15}\cdot5^2\right)\)
\(=5^{20}:5^{17}=5^3=125\)
\(5^{20}:\left(5^{15}\cdot6+5^{15}\cdot19\right)\)
\(=5^{20}:[5^{15}\cdot\left(6+19\right)\)
\(=5^{20}:\left(5^{15}\cdot25\right)\)
\(=5^{20}:\left(5^{15}\cdot5^2\right)\)
\(=5^{20}:5^{15+2}\)
\(=5^{20}:5^{17}\)
\(=5^{20-17}\)
\(=5^3\)
\(=125\)
=520:(515*(6+19))
=520:(515*25)
=520:(515*52)
=520:517=53=125
k cho mình nha
\(5^{20}:\left(5^{15}.6+5^{15}.19\right)\)
=\(5^{20}:5^{15}.\left(6+19\right)\)
=\(5^{20}:5^{15}.25\)
=\(5^{20}:5^{15}.5^2\)
=\(5^{20}:5^{17}\)
=\(5^3\)=125.
23+3.x=5\(^6\)
23+3.x=15625
3.x=15625-23
3.x=15602
x=15602:3
x=5200,666667
Ta có:
23+3.x = \(5^6\)
\(\Leftrightarrow23+3.x=15625\)
\(\Leftrightarrow3.x=15625-23\)
\(\Leftrightarrow3.x=15602\)
<=> x = 15602:3
=> x =5200,666667
Học tốt
\(\frac{A}{B}=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^9.2^{19}.3^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}=\frac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(5.3-7.2\right)}\)
\(=\frac{2^{29}.3^{18}.1}{2^{28}.3^{18}.1}=2\)
A = 5 x 415 x 99 - 4 x 320 x 89 = 5 x 230 x 318- 22 x 227 x 320
=229 x 318 x(2x5-32)=229 x 318
B = 5 x 29 x 619 - 7 x 229 x 276=5 x 29 x 219 x 319 - 7 x 229 x 318
=228 x 318 x (5 x 3-7 x 2)= 228.318
=>A:B= 229.318:228:318=2
520 : ( 515 . 6 + 515 . 19)
=5^20: [5^15(6+19)]
=5^20:5^15.5^2
=5^3
\(5^{20}\div\left(5^{15}.6+5^{15}.19\right)\)
\(=\)\(5^{20}\div\left[5^{15}.\left(6+19\right)\right]\)
\(=\)\(5^{20}\div\left[5^{15}.25\right]\)
\(=\)\(5^{20}\div\left[5^{15}.5^2\right]\)
\(=\)\(5^{20}\div5^{17}\)
\(=\)\(5^3\)
\(=\)\(125\)