K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Gọi d là ƯC(5n+1;6n+1), ta có:

(5n+1).6-(6n+1).5 chia hết cho d

<=> (30n+6)- (30n+5) chia hết cho d

<=> 1 chia hết d

=> d=1

Vậy 5n+1 và 6n+1 là hai số nguyên tố cùng nhau

 

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

14 tháng 12 2017

Đặt ƯCLN ( a,b ) = d ( d thuộc N )

Thay a = 5n + 3 , b = 6n + 1

=> \(\hept{\begin{cases}5n+3⋮d\\6n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}6.\left(5n+3\right)⋮d\\5.\left(6n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}30n+18⋮d\\30n+5⋮d\end{cases}}\)=> ( 30n + 18 ) - ( 30n + 5 ) \(⋮d\)

=> 13 \(⋮\)d => d thuộc Ư ( 13 ) = { 1 ; 13 } mà d lớn nhất => d = 13

ƯCLN ( 5n + 3 ; 6n + 1 ) = 13 hay ƯCLN ( a , b ) = 13

Vậy ƯCLN ( a , b ) = 13

28 tháng 12 2017

ƯCLN(a,b)=13

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

7 tháng 11 2017

Gọi d là ước chung của 5n+1 và 6n+1.

 5n+1 chia hết cho d; 6n+1 chia hết cho d.

=> 5n+1 - 6n+1 chia hết cho d.

=> 30n+6 - 30n+5 chia hết cho d.

=>  1 chia hết cho d.

=> d = 1 và ƯCLN(1) = ƯC(5n+1;6n+1) = 1

Vì 5n+1 và 6n+1 có ước chung lớn nhất là 1 => 5n+1 và 6n+1 là 2 số nguyên tố cùng nhai!

7 tháng 11 2017

goi d là UCLL của 5n+1 và 6n+1

=>5n+1 chai hết cho d=> 6(5n+1) chia hết cho d <=> 30n+6 chia hết cho d

  6n+1 chia hết cho d=> 5(6n+1) chia hết cho d <=> 30n+5 chia hết cho d

=> 30n+6-30n-5 chia hết cho d

<=> 1 chia hết cho d=> d bằng 1

d bằng 1 => 5n+1 và 6n+1 là 2 snt cùng nhau

nhớ tk cho mk nha, ai tk cho mk thì mk tk lại cho

16 tháng 1 2022

Giả sử:

\(\left\{{}\begin{matrix}\left(5n+1\right)⋮a\\\left(6n+1\right)⋮a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(30n+6\right)⋮a\\\left(30n+5\right)⋮a\end{matrix}\right.\\ \Rightarrow\left[\left(30n+6\right)-\left(30n+5\right)\right]⋮a\\ \Rightarrow1⋮a\\ \Rightarrow a=\pm1\)

Vậy 2 số trên là 2 số nguyên tố cùng nhau 

25 tháng 11 2015

gọi UCLN(2n+1;6n+5)=d

ta có :

2n+1 chia hết cho d

=>3(2n+1) chia hết cho d

=>6n+3 chia hết cho d

6n+5 chia hết cho d

=>(6n+5)-(6n+3) chia hết cho d

=>2 chia hết cho d=>d thuộc U(2)={1;2} 

nếu d=2 thì 2n+1 ko chia hết cho d

nên d=1

=>UCLN(2n+1;6n+5)=1

 

 

5 tháng 12 2015

Gọi UCLN(5n+1;6n+1) là a

Ta có:5n+1 chia hết cho a

         6n+1 chia hết cho a

=>6(5n+1) chia hết cho a

    5(6n+1) chia hết cho a

=>30n+6 chia hết cho a

    30n+5 chia hết cho a

=>30n+6 -(30n+5) chia hết cho a

 =>        1            chia hết cho a

=>a=1

Vậy 5n+1 và 6n+1 là 2 số nguyên tố cùng nhau vì UCLN của chúng =1.

13 tháng 12 2023

Ko bt làm

26 tháng 11 2018

a) Gọi ƯCLN(4n+1;6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

<=> 12n + 3 - 12n -2 \(⋮\)d

<=> 3 - 2  \(⋮\)d  (trừ 12n)

<=> d = 1

Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau

b) Gọi ƯCLN(5n+4;6n+5) = d

=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)

<=>30n + 25 - 30n + 24 \(⋮\)d

<=>25 - 24 \(⋮\)(bỏ đi 30n)

<=> d = 1

Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau