Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2: gọi biểu thức là A đi
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=1.\left[\left(a+b\right)^2-3ab\right]+ab=\left(a+b\right)^2-2ab=1-2ab\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)(chỗ 4ab là cộng 2 vế với 2ab đó)
\(\Leftrightarrow-ab\ge\frac{-1}{4}\Leftrightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\Rightarrow A\ge\frac{1}{2}\Rightarrowđpcm\)
\(20x^2y-12x^3=4x^2\left(5y-3x\right)\)
\(8x^4+12x^2y^4-16x^3y^4=4x^2\left(2x^2+3y^4-4xy^4\right)\)
\(6x^3-9x^2=3x^2\left(2x-3\right)\)
\(4xy^2+8xy^2=12xy^2\)
\(3x\left(x+1\right)-5\left(x+1\right)=\left(3x-5\right)\left(x+1\right)\)
\(20x^2y-12x^3\)
\(=4x^2\left(5y-3x\right)\)
\(8x^4+12x^2y^4-16x^3y^4\)
\(=4x^2\left(2x^2+3y^4-4xy^4\right)\)
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)
a) \(=\left(x-2y\right)\left(x^2+5x\right)\)
b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)
c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)^2\)
d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)
f) \(=2x\left(x-y\right)-16\left(x-y\right)\)
\(=2\left(x-y\right)\left(x-8\right)\)
đặt A=\(5x^2+y^2+4xy-16x-6y+14\)
\(=\left(2x+y-3\right)^2+x^2-4x+4-12\)
\(=\left(2x+y-3\right)^2+\left(x-2\right)^2-12\)
\(\left(2x+y-3\right)^2\ge0\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(2x+y-3\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(2x+y-3\right)^2+\left(x-2\right)^2-12\ge-12\)
dấu = xảy ra khi
\(\hept{\begin{cases}2x+y-3=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
Vậy \(Min_A=-12\)khi x=2 , y=-1
Bài 1:
a) \(2x^2y\left(3xy-4xy^2-\frac{3}{2xy^3}\right)\) \(=6x^3y^2-8x^2y^3-\frac{3x}{y^2}\)
b) \(\left(15x^4y^2-36x^3y^4+21x^2y^5\right):3x^2y^2\)\(=5x^2-12xy^2+7y^3\)
Bài 2:
a) \(x^2-4xy+4y^2-16\) \(=\left(x-2y\right)^2-16=\left(x-2y-4\right)\left(x-2y+4\right)\)
b) \(2x+xy-x^2-xy\) \(=x\left(2-x\right)\)
c)\(16x^2-25y^2=\left(4x-5y\right)\left(4x+5y\right)\)
a) 3x2 - 3y2 - 12x + 12x
= 3( x2 - y2- 4x + 4x )
= 3( x - y)( x + y)
b) 4x3 + 4xy2 + 8x2y - 16x
= 4x( x2 + y2 + 2xy - 4)
= 4x[( x + y)2 - 22]
= 4x( x + y - 2)( x + y +2)
c) x4 - 5x2 + 4
= ( x2)2 - 2.2x2 + 22 - x2
= ( x2 - 2)2 - x2
= ( x2 - 2 - x)( x2 - 2 + x)
4xy³ + 16x³y
= 4xy(y² + 4x²)