K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

câu này căng đấy nhưng tớ sẽ cố giúp

thế này: 

4x+y2-4x+10y+26=0.

= 4x\(^2\)- 4x+1+y\(^2\)+10x+25=0

= (2x-1)\(^2\)+ (y+5)\(^2\)= 0

=2x-1=0 và y+5=0

= x= 1/2 và y=-5

22 tháng 12 2016

4x^2 +y^2 -4x+10y+26=0 

4x^2-4x+1 +y^2+10y+25 =0

(2x-1)^2+(y+5)^2=0 

suy ra 2x-1=0 và y+5=0 

 x=1/2,y=-5

19 tháng 8 2020

4x2 + y2 - 4x + 10y + 26 = 0

<=> ( 4x2 - 4x + 1 ) + ( y2 + 10y + 25 ) = 0

<=> ( 2x - 1 )2 + ( y + 5 )2 = 0

<=> \(\hept{\begin{cases}2x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-5\end{cases}}\)

a, \(x^2+y^2-2x+10y+26=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)

b,\(4x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

c,\(5x^2+9y^2-12xy+4x+4=0\)

\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)

\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)

d,\(5x^2+9y^2-6xy-4x+1=0\)

\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

17 tháng 2 2017

câu 2 : x^2-6x+9+y^2+10y+25+(4z-1)^2=0

(y+5)^2=0 => y=-5

6 tháng 10 2019

Hơi mờ một tí, bạn cố gắng đọc nhá haha

17 tháng 9 2018

 làm bừa thui,ai trên 11 điểm tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

17 tháng 9 2018

\(4x^2+y^2-4x+10y+26\)

\(=\left(2x\right)^2-2.2x+1+y^2+2.y.5+25\)

\(=\left(2x-1\right)^2+\left(y+5\right)^2\)

\(\RightarrowĐpCm\)

18 tháng 8 2017

\(x^2+y^2+26+10x+2y=0\)

\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))

\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

21 tháng 9 2020

a) x2 + y2 - 6x + 2y + 10 = 0

<=> ( x2 - 6x + 9 ) + ( y2 + 2y + 1 ) = 0

<=> ( x - 3 )2 + ( y + 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

b) 4x2 + y2 - 20x - 2y + 26 = 0

<=> ( 4x2 - 20x + 25 ) + ( y2 - 2y + 1 ) = 0

<=> ( 2x - 5 )2 + ( y - 1 )2 = 0

<=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=1\end{cases}}\)

21 tháng 9 2020

a) x2 + y2 - 6x + 2y + 10 = 0

=> (x2 - 6x + 9) + (y2 + 2y + 1) = 0

=> (x - 3)2 + (y + 1)2 = 0 (1)

Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Đẳng thức (1) xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

Vậy x = 3 ; y = -1

b) 4x2 + y2 + 20x - 2y + 26 = 0

=> (4x2 - 20x + 25) + (y2 - 2y + 1) = 0

=> (2x - 5)2 + (y - 1)2 = 0 (1)

Vì  \(\hept{\begin{cases}\left(2x-5\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x-5\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Đẳng thức (1) "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2,5\\y=1\end{cases}}\)

Vậy x = 2,5 ; y = 1

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x