K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2023

Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.

NV
22 tháng 8 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

pt trở thành: \(t^2-2-3t+9=0\)

\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)

Vậy pt đã cho vô nghiệm

30 tháng 6 2019

a) \(x^3-9x^2+15x+25\)

\(=x^3+x^2-10x^2-10x+25x+25\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+25\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2.x.5+25\right)=\left(x+1\right)\left(x-5\right)^2\)

30 tháng 6 2019

NM
24 tháng 8 2021

\(a.\left(x^2+2x+x+2\right)\left(x^2+5x+6x+30\right)-5\)

\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+6\right)-5=\left(x^2+7x+6\right)\left(x^2+7x+10\right)\)

Đặt \(x^2+7x+8=a\Rightarrow\text{Biểu thức }=\left(a-2\right)\left(a+2\right)-5=a^2-9=\left(a-3\right)\left(a+3\right)\)

nên : \(BT=\left(x^2+7x+5\right)\left(x^2+7x+11\right)\)

b.\(BT=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

Đặt \(x^2+5ax+5a^2=y\Rightarrow BT=\left(y-a^2\right)\left(y+a^2\right)+a^4=y^2=\left(x^2+5ax+5a^2\right)^2\)

=>x^4+2x^2+1-4x^2-144x-1296=0

=>(x^2+1)^2-(2x+36)^2=0

=>(x^2+1-2x-36)(x^2+1+2x+36)=0

=>x^2-2x-35=0

=>(x-7)(x+5)=0

=>x=7 hoặc x=-5

23 tháng 5 2017

a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Chia 2 vế cho x2 - 2x + 4 ta được:

\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)

Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:

\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)

\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)

\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)

                                                        Vậy có 2 nghiệm trên

câu b, c tương tự thôi