Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x-\frac{1}{4}\right)^4=\frac{1}{256}\)
\(\left(x-\frac{1}{4}\right)=\sqrt[4]{\frac{1}{256}}\)
\(\left(x-\frac{1}{4}\right)=\frac{1}{4}\)
\(x=\frac{1}{4}+\frac{1}{4}\)
\(x=\frac{1}{2}\)
b ) \(\left(3x-2\right)^5=-234\)
\(\left(3x-2\right)=-\sqrt[5]{234}\)
\(\left(3x-2\right)=-2,977441049\)
\(3x=-0,9774410485\)
\(x=-0,3258136828\)
a.
(x-1/4)^4=1/256
(x-1/4)^4=(1/4)^4
x-1/4=1/4
x=1/4+1/4
x=2/4
+) \(\left(x-3\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
Vậy x = 7 hoặc x = -1
+) \(\left(1-3x\right)^3=-64\)
\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)
\(\Rightarrow1-3x=-4\)
\(\Rightarrow3x=1+4\)
\(\Rightarrow3x=5\)
\(\Rightarrow x=5:3\)
\(\Rightarrow x=\frac{5}{3}\)
Vậy \(x=\frac{5}{3}\)
+) \(x^{13}=27.x^{10}\)
\(\Rightarrow x^{13}:x^{10}=27\)
\(\Rightarrow x^3=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)
\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)
\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)
\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)
TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)
TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)
_Chúc bạn học tốt_
a, (x-3)^2 = 16
=> (x-3)^2=4^2
=> x-3=4
=> x= 4+3
=> x = 7 .Vậy x =7
b,(1-3x)^3 = 64
=> ( 1-3x)^3 = 4^3
=> 1-3x = 4
=> 3x = 1-4
=> 3x = -3
=> x = -1 . Vậy x = -1
c, x^13 = 27.x^10
=> x^13 : x^10 = 27
=> x^3 = 3^3
=> x = 3 . Vậy x = 3
a) \(5^{-1}.25^x=125\)
\(\Rightarrow5^{-1}.5^{2x}=5^3\)
\(\Rightarrow5^{2x-1}=5^3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(|x+1|+|x+2|+|x+3|=4x\)
Vì \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+2|\ge0\forall x\\|x+3|\ge0\forall x\end{cases}}\)
\(\Rightarrow|x+1|+|x+2|+|x+3|\ge0\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x+2>0\\x+3>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}|x+1|=x+1\\|x+2|=x+2\\|x+3|=x+3\end{cases}}\)
\(\Rightarrow\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=4x\)
\(\Rightarrow3x+6=4x\)
\(\Rightarrow x=6\)
Vậy \(x=6\)
M (x)- N (x)
= \(3x^4+5x^3-3x^2+4x-2\) - \(2x^4-5x^3+4x^2-4x+5\)
= \(x^4+x^2+3\)
Do \(x^4\ge0\) ( với mọi x )
\(x^2\ge0\) ( với mọi x )
=> \(x^4+x^2+3>0\) ( với mọi x )
Vậy M(x) - N(x) vô nghiệm
(4x-2)^4x-5=(4x-2)^x+13
(4x-2)^4x-5-(4x-2)^x+13=0
(4x-2)^3x-13=0
Do vậy 4x-2=0
x=1/2. Vì xEZ mà 1/2 ko thuộc Z => ko có số x thỏa mãn bài toán