K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

ý là cm cái đó hả

24 tháng 4 2017

\(4a^2+5-4a+b^2>2b\)

\(\Rightarrow4a^2+5-4a+b^2-2b>0\)

\(\Rightarrow\left(4a^2-4a+1\right)+\left(b^2-2b+1\right)+3>0\)

\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3>0\)

Dễ thấy: \(\left(2a-1\right)^2\ge0\forall a;\left(b-1\right)^2\ge0\forall b\)

\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2\ge0\forall a,b\)

\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3\ge3>0\forall a,b\)

15 tháng 7 2016

1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)

2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)

3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3

14 tháng 7 2016

\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left(\left(a^2-2ab+b^2\right)-c^2\right)\left(\left(a^2+2ab+b^2\right)-c^2\right)\)

\(=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

6 tháng 9 2018

Làm trc cho 2 câu cuối

c) \(a^2-b^2-4a+4b\)

\(=\left(a+b\right)\left(a-b\right)-4\left(a-b\right)\)

\(=\left(a-b\right)\left[\left(a+b\right)-4\right]\)

d) \(a^2+2ab+b^2-2a-2b+1\)

\(=\left(a+b\right)^2-2\left(a+b\right)+1\)

\(=\left(a+b\right)\left[\left(a+b\right)-2\right]+1\)

NV
22 tháng 3 2021

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

NV
22 tháng 3 2021

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

19 tháng 4 2015

= (4a^2 -4a + 1) + (b^2 + 2b+ 1) + 1/2 

= (2a-1)^2 + (b+1)^2 + 1/2 >0 với mọi a, b