Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4/3+9/8+16/15+..............+4064256/4064255
A=1+1/3+1+1/8+1/15+...............+1/4064255
A=(1+1+...+1)+(1/3+1/8+...+1/406255) (có 2015 số 1)
A=2015+(1/1.3+1/2.4+...........+1/2015.2017)
A=2015+1/2(1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+....+1/2012-1/2014+1/2013-1/2015+1/2014-1/2016+1/2015-1/2017)
A=2015+1/2(1+1/2-1/2016-1/2017)
A=2015,749504
k cho mình nhé mình k lại cho
Đặt A = \(\frac{1.3+2}{2^2}+\frac{2.4+2}{3^2}+\frac{3.5+2}{4^2}+...+\frac{2010.2012+2}{2011^2}+\frac{2015.2017+2}{2016^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+2}{2^2}+\frac{\left(3-1\right)\left(3+1\right)}{3^2}+...+\frac{\left(2016-1\right)\left(2016+1\right)+2}{2016^2}\)
\(=\frac{2^2-1+2}{2^2}+\frac{3^2-1+2}{3^2}+....+\frac{2016^2-1+2}{2016^2}\)
\(=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+...+\frac{2016^2+1}{2016^2}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}\right)\)(2015 hạng tử 1)
\(=2015+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2016.2016}\right)\)
\(< 2015+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)=2015+\left(1-\frac{1}{2016}\right)\)
= 2015 + 1 + 1/2016
= 2016 + 1/2016 < 2017
=> A < 2017 (ĐPCM)
\(\dfrac{6}{1\cdot3}+\dfrac{6}{3\cdot5}+...+\dfrac{6}{\left(n-2\right)n}\\ =3\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(n-2\right)n}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}\right)\\ =3\left(1-\dfrac{1}{n}\right)\\ =3\cdot\dfrac{n-1}{n}\)
B=2(2/3.5 - 2/ 5.7 +....................+ 2/99.101)
B=2(1/3.5 -2/5.7+..............+1/99.100)
B=2(1/3-1/5+1/5-.............+1/99-1/100)
B=2(1/3-1/100)
B=2.97/100
B=97/50