K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

Rút gọn: −3x3+2x2+x

Hệ số cao nhất : -3

Hệ số tự do là: 0

Không có đáp án đúng

\(P\left(x\right)=-3x^3+2x^2+x\)

=>Không có câu nào đúng

câu 1 : tìm bậc, hệ số cao nhất và hệ số tự do của đa thức : \(P=-x^3-2x^2+x^3+4x+5\) câu 2 xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau : a) \(5x^2-2x+1-3x^4\) b) \(1,5x^2-3,4x^4+0,5x^2-1\) câu 3 :  a) Tính \(\left(\dfrac{1}{2}x^3\right)\times\left(-4x^2\right)\). tìm hệ số và bậc của đơn thức nhận được b) Tính \(\dfrac{1}{2}x^3-\dfrac{5}{2}x^3\). tìm hệ số và bậc của đơn thức...
Đọc tiếp

câu 1 : tìm bậc, hệ số cao nhất và hệ số tự do của đa thức : \(P=-x^3-2x^2+x^3+4x+5\)

câu 2 xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau :

a) \(5x^2-2x+1-3x^4\)

b) \(1,5x^2-3,4x^4+0,5x^2-1\)

câu 3 : 

a) Tính \(\left(\dfrac{1}{2}x^3\right)\times\left(-4x^2\right)\). tìm hệ số và bậc của đơn thức nhận được

b) Tính \(\dfrac{1}{2}x^3-\dfrac{5}{2}x^3\). tìm hệ số và bậc của đơn thức nhận được

câu 4 : cho 2 đa thức :

\(A\left(x\right)=x^3+\dfrac{3}{2}x-7x^4+\dfrac{1}{2}x-4x^2+9\) và \(B\left(x\right)=x^5-3x^2+8x^4-5x^2-x^5+x-7\)

a) thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm của biến

b) tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho

câu 5 : cho 2 đa thức : 

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4-4x^3\) và 

\(Q\left(x\right)=3x-4x^3+8x^2-5x+4x^3+5\)

thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm của biến

câu 6 : người ta dùng 2 máy bơm để bơm nước vào bể chứa nước. máy thứ nhất bơm mỗi giờ được \(22m^3\) nước. máy thứ 2 bơm mỗi giờ được \(16m^3\) nước. sau cả hai máy chạy trong \(x\) giờ, người  ta tắt máy thứ nhất và để máy thứ 2 chạy thêm \(0,5\) giờ nữa thì bể nước đầy. 

hãy viết đa thức (biến \(x\)) biểu thị dung tích của mỗi bể (\(m^3\)), biết rằng trước khi bơm trong bể có \(1,5m^3\) nước. tìm hệ số cao nhất và hệ số tự do của đa thức đó. 

câu 7 : viết đa thức \(F\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :

\(\cdot\) bật của \(F\left(x\right)\) bằng \(3\)

\(\cdot\) hệ số của \(x^2\) bằng hệ số của \(x\) và bằng \(2\)

\(\cdot\) hệ số cao nhất của \(F\left(x\right)\) bằng \(-6\) và hệ số tự do bằng \(3\)

câu 8 : kiểm tra câu hỏi sau :

a) \(x=\dfrac{-1}{8}\) có phải là nghiệm của đa thức \(P\left(x\right)=4x+\dfrac{1}{2}\) không

b) trong 3 số \(1;-1;2\), số nào là số nghiệm của đa thức \(Q\left(x\right)=x^2+x-2?\)

câu 9 : mẹ cho quỳnh 100 000 đồng. quỳnh mua một bộ dụng cụ học tập có giá 37 000 đồng và một cuốn sách tham khảo môn toán với giá \(x\) (nghìn đồng).

a) hãy tìm đa thức (biến \(x\)) biểu thị số tiền quỳnh còn lại (đơn vị nghìn đồng). tìm bậc của đa thức đó.

b) sau khi mua sách thì quỳnh tiêu vừa hết số tiền mẹ cho, hỏi số tiền của cuốn sách là bao nhiêu ?

1
CT
10 tháng 1 2023

Em muốn hỏi bài nào vậy? Quá nhiều bài thầy cô và các bạn không thể trả lời được hết em ạ

16 tháng 4 2023

loading...    giúp em bài 4 với ạ

15 tháng 5 2016

a, A(x)+B(x)=\(\left(3x^2-4x+5\right)+\left(3x^2+2x-5\right)\)

A(x)+B(x)=\(3x^2-4x+5+3x^2+2x-5\)

A(x)+B(x)=\(6x^2-2x\)

b, đa thức A(x) bậc 3 

đa thức B(x) bậc 3

c, A(x)-B(x)=\(\left(3x^2-4x+5\right)-\left(3x^2+2x-5\right)\)

 A(x)-B(x)=\(3x^2-4x+5-3x^2-2x+5\)

 A(x)-B(x)=-6x+10

\(\Rightarrow\) A(x)-B(x) bậc 1

a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3

=4x^4-9x^3+x^2-5x+3

Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x

=5x^4-3x^3+4x^2-5x-2

b)

P(x)

-bậc:4

-hệ số tự do:3

-hệ số cao nhất:4

Q(x)

-bậc :4

-hệ số tự do :-2

-hệ số cao nhất:5

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

5 tháng 4 2023

a,P(\(x\)) =  \(x^3\) - 2\(x\) + 6 + 3\(x\)4 - \(x\) + 2\(x\)3 - 2\(x\)2

   P(\(x\)) = (\(x^3\) + 2\(x^3\)) - ( 2\(x\) + \(x\) ) + 6 + 3\(x^4\) - 2\(x^2\)

   P(\(x\))  = 3\(x^3\) - 3\(x\) + 6 + 3\(x^4\)- 2\(x^2\)

   P(\(x\) )= 3\(x^4\) + 3\(x^3\) - 2\(x^2\) - 3\(x\) + 6

    Q(\(x\)) = \(x^3\) -  7 + 2\(x^2\) + 3\(x\) - 9\(x^2\) - 2 - 4\(x^3\)

   Q(\(x\)) =  (\(x^3\) - 4\(x^3\)) - ( 7 + 2) - (9\(x^2\) - 2\(x^2\)) + 3\(x\)

   Q(\(x\)) = -3\(x^3\) - 9 - 7\(x^2\) + 3\(x\)

  Q(\(x\)) = -3\(x^3\) - 7\(x^2\) + 3\(x\) - 9

Bậc  cao nhất của P(\(x\)) là 4; hệ số cao nhất là: 3; hệ số tự do là 6

Bậc cao nhất của Q(\(x\)) là 3; hệ số cao nhất là -3; hệ số tự do là -9

 

 

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)