Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3y3 - 7y2 - 7y + 3 = 0
<=> 3y3 + 3y2 - 10y2 - 10y + 3y + 3 = 0
<=> 3y2( y + 1 ) - 10y( y + 1 ) + 3( y + 1 ) = 0
<=> ( y + 1 )( 3y2 - 10y + 3 ) = 0
<=> ( y + 1 )( 3y2 - 9y - y + 3 ) = 0
<=> ( y + 1 )[ 3y( y - 3 ) - ( y - 3 ) ] = 0
<=> ( y + 1 )( y - 3 )( 3y - 1 ) = 0
<=> y = -1 hoặc y = 3 hoặc y = 1/3
Vậy ...
2y4 - 9y3 + 14y2 - 9y + 2 = 0
<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0
<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0
<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0
<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0
<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0
<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0
<=> y = 2 hoặc y = 1 hoặc y = 1/2
Vậy ...
đừng sủa lắm , không biết mỏi mồm à
a,\(\left(3x-2y\right)^2-\left(5x+7y\right)^2-14y^2\)
\(=9x^2+4y^2-12xy-25x^2-49y^2-70xy-14y^2\)
\(=-16x^2-59y^2-82xy\)
b,\(-\left(4x-\frac{3}{2}\right)^2+\left(3-2x\right)^2-\frac{1}{4}\)
\(=-16x^2+12x-\frac{9}{4}+9-12x+4x^2-\frac{1}{4}\)
\(=-12x^2-\frac{5}{2}+9=\frac{13}{2}-12x^2\)
c,\(\left(2x+1\right)^2-2\left(2x+1\right).\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(2x+1-7-3x\right)^2=\left(-6-x\right)^2=36+12x+x^2\)
d, \(\left(5-3x\right)^2+2\left(5-3x\right)\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(5-3x+7+3x\right)^2=12^2=144\)
giải
A=(3x-5)(2x+11)-(2x+3)(3x+7)
=6x^2+33x-10x-55-(6x^2+14x+9x+21)
=6x^2+33x-10x-55-6x^2-14x-9x-21
= -76
vậy biểu thức không phụ thuộc vào biến x,y
B=(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
vậy biểu thức không phụ thuộc vào biến x
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)
\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)
\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)
\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)
\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)
\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)
\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)
\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)
a) \(\left(2x^2+x-6\right)^2+3\left(2x^2+x-3\right)-9=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)^2+3\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-6+3\right)=0\)
\(\Leftrightarrow\left(2x^2+x-6\right)\left(2x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)hoặc \(\orbr{\begin{cases}x-1=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x=1\\x-\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-2;\frac{3}{2};1;-\frac{3}{2}\right\}\)
b) \(2y^4-9y^3+14y^2-9y+2=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-1\right)^2\left(2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\\left(y-1\right)^2=0\end{cases}}\)hoặc \(2y-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y-1=0\end{cases}}\)hoặc \(2y=1\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)hoặc \(y=\frac{1}{2}\)
Vậy tập nghiệm của PT là \(S=\left\{2;1;\frac{1}{2}\right\}\)
a) Đặt 2x2 + x - 6 = a
pt <=> a2 + 3( a + 3 ) - 9 = 0
<=> a2 + 3a + 9 - 9 = 0
<=> a( a + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 6 + 3 ) = 0
<=> ( 2x2 + x - 6 )( 2x2 + x - 3 ) = 0
<=> ( 2x2 + 4x - 3x - 6 )( 2x2 - 2x + 3x - 3 ) = 0
<=> [ 2x( x + 2 ) - 3( x + 2 ) ][ 2x( x - 1 ) + 3( x - 1 ) ] = 0
<=> ( x + 2 )( 2x - 3 )( x - 1 )( 2x + 3 ) = 0
<=> x = -2 hoặc x = 1 hoặc x = ±3/2
Vậy S = { -2 ; 1 ; ±3/2 }
b) 2y4 - 9y3 + 14y2 - 9y + 2 = 0
<=> 2y4 - 4y3 - 5y3 + 10y2 + 4y2 - 8y - y + 2 = 0
<=> 2y3( y - 2 ) - 5y2( y - 2 ) + 4y( y - 2 ) - ( y - 2 ) = 0
<=> ( y - 2 )( 2y3 - 5y2 + 4y - 1 ) = 0
<=> ( y - 2 )( 2y3 - 2y2 - 3y2 + 3y + y - 1 ) = 0
<=> ( y - 2 )[ 2y2( y - 1 ) - 3y( y - 1 ) + ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 3y + 1 ) = 0
<=> ( y - 2 )( y - 1 )( 2y2 - 2y - y + 1 ) = 0
<=> ( y - 2 )( y - 1 )[ 2y( y - 1 ) - ( y - 1 ) ] = 0
<=> ( y - 2 )( y - 1 )2( 2y - 1 ) = 0
<=> y = 2 hoặc y = 1 hoặc y = 1/2
Vậy S = { 2 ; 1 ; 1/2 }
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5
=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0
=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0
=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0
=> -2x2 + 3 = 0
=> -2x2 = -3
=> x2 = 3/2
=> x = \(\pm\sqrt{\frac{3}{2}}\)
2. \(\left(x+5\right)^2-6=0\)
=> x2 + 10x + 25 - 6 = 0
=> x2 + 10x + 19 = 0
=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)
3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)
=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0
=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0
=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0
=> -2x + 27 = 0
=> -2x = -27
=> x = 27/2
4. \(\left(x-2\right)^3-x^3+6x^2=7\)
=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7
=> 12x - 8 = 7
=> 12x = 15
=> x = 5/4
5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)
=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12
=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12
=> -6x + 12 = 12
=> -6x = 0
=> x = 0
6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)
=> 48x - 5x - 2 = 0
=> 43x - 2 = 0
=> 43x = 2
=> x = 2/43
Còn bài cuối tự làm :>
Anh Sang làm cầu kì quá ;-;
1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5
<=> x3 + 8 - x3 - 2x2 = 5
<=> 8 - 2x2 = 5
<=> 2x2 = 3
<=> x2 = 3/2
<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)
<=> \(x=\pm\sqrt{\frac{3}{2}}\)
2. ( x + 5 )2 - 6 = 0
<=> ( x + 5 )2 - ( √6 )2 = 0
<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0
<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)
3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x
<=> x3 + 27 - x3 = 2x
<=> 27 = 2x
<=> x = 27/2
4. ( x - 2 )3 - x3 + 6x2 = 7
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
<=> 12x - 8 = 7
<=> 12x = 15
<=> x = 15/12 = 5/4
5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12
<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12
<=> 3x2 - 12x + 12 + 6x - 3x2 = 12
<=> -6x + 12 = 12
<=> -6x = 0
<=> x = 0
6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0
<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0
<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0
<=> 43x - 2 = 0
<=> 43x = 2
<=> x = 2/43
7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0
<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0
<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0
<=> -39x + 4 = 0
<=> -39x = -4
<=> x = 4/39