K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

\(3x\left(x+7\right)+21-3x^2=0\)

\(\Leftrightarrow3x^2+21x+21-3x^2=0\)

\(\Leftrightarrow21x+21=0\)

\(\Leftrightarrow21\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

3 tháng 7 2019

1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0

<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0

<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4

<=> x = -4

=> x = -4

2) xem lại đề rồi chúng mình nói chuyện cậu nha :))

3) tương tự (mình hơi lười, thông cảm :v)

3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4

<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42

2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0

12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0

- 21x = -12

x = 4/7

1, đã có người giải

8 tháng 12 2019

1) (x - 5)2 - (x + 3)(x - 3) = 14

=> x2 - 10x + 25 - x2 + 9 = 14

=> -10x + 34 = 14

=> -10x = 14 - 34

=> -10x = -20

=> x = 2

2) (x + 7)2 - 3x - 21 = 0

=> x2 + 14x + 49 - 3x - 21 = 0

=> x2 + 11x + 28 = 0

=> x2 + 4x + 7x + 28 = 0

=> x(x + 4) + 7(x + 4) = 0

=> (x + 7)(x + 4) = 0

=> \(\orbr{\begin{cases}x+7=0\\x+4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-7\\x=-4\end{cases}}\)

8 tháng 12 2019

a

\(\left(x-5\right)^2-\left(x+3\right)\left(x-3\right)=14\)

\(\Leftrightarrow x^2-10x+25-x^2+9=14\)

\(\Leftrightarrow-10x=-20\)

\(\Leftrightarrow x=2\)

b

\(\left(x+7\right)^2-3x-21=0\)

\(\Leftrightarrow x^2+14x+49-3x-21=0\)

\(\Leftrightarrow x^2+11x+28=0\)

\(\Leftrightarrow\left(x^2+4x\right)+\left(7x+28\right)=0\)

\(\Leftrightarrow x\left(x+4\right)+7\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=0\)

\(\Leftrightarrow x=-4;x=-7\)

27 tháng 9 2020

a) \(3x^3-12x=0\)

=> \(3x\left(x^2-4\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)

=> \(x^2\left(x-3\right)-4x+12=0\)

=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)

=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)

=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)

d) \(x^2-4x-21=0\)

=> \(x^2+3x-7x-21=0\)

=> \(x\left(x+3\right)-7\left(x+3\right)=0\)

=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (x + 1)(3x - 10) = 0

=> x = -1 hoặc x = 10/3

27 tháng 9 2020

a) \(3x^3-12x=0\)

\(\Leftrightarrow3x\left(x^2-4\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)

c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)

27 tháng 9 2020

Ta có : 3x3 - 12x = 0

=> 3x(x2 - 4) = 0

=> x(x - 2)(x + 2) = 0

=> \(x\in\left\{0;2;-2\right\}\)

b) x2(x - 3) + 12 - 4x = 0

=> x2(x - 3) - 4(x - 3) = 0

=> (x2 - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)

Vậy \(x\in\left\{-2;2;3\right\}\)

c) (3x - 1)2 - (2x - 3)2 = 0

=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0

=> (x + 2)(5x - 4) = 0

=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)

Vậy \(x\in\left\{-2;0,8\right\}\)

d) x2 - 4x - 21 = 0

=> x2 - 7x + 3x - 21 = 0

=> x(x - 7) + 3(x - 7) = 0

=> (x + 3)(x - 7) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)

Vậy \(x\in\left\{-3;7\right\}\)

e) 3x2 - 7x - 10 = 0

=> 3x2 + 3x - 10x - 10 = 0

=> 3x(x + 1) - 10(x + 1) = 0

=> (3x - 10)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)

Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)

8 tháng 12 2019

(Ko chép lại đề)

\(a.\Rightarrow\orbr{\begin{cases}3x+5=0\\4-3x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)

\(b.\left(3x-2\right)\left(x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-7=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=7\end{cases}}\)

\(c.7x^2=28\)

\(x^2=4\)

\(x^2=2^2\)

\(x=\pm2\)

\(d.\left(2x+1\right)\left(1+x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\1+x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}\)

12 tháng 8 2021

a)\(\left(3x+5\right)\left(4-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5=0\\4-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{4}{3}\end{cases}}}\)

b)\(3x\left(x-7\right)-2\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\3x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=\frac{2}{3}\end{cases}}}\)

c) \(7x^2-28=0\)

\(\Leftrightarrow7x^2=28\)

\(\Leftrightarrow7x^2=7.4\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

d)\(\left(2x+1\right)+x\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\1+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-1\end{cases}}}\)

#H

30 tháng 7 2018

1) -3x2+5x=0

-x(3x-5)=0

suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5

2) x2+3x-2x-6=0

x(x+3)-2(x+3)=0

(x-2)(x+3)=0

suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3

3) x2+6x-x-6=0

x(x+6)-(x+6)=0

(x-1)(x+6)=0. vậy nghiệm là 1 và -6

4) x2+2x-3x-6=0

x(x+2)-3(x+2)=0

(x-3)(x+2)=0

vậy nghiệm là -2 và 3

5) x(x-6)-4(x-6)=0

(x-4)(x-6)=0. vậy nghiệm là 4 và 6

6)x(x-8)-3(x-8)=0

(x-3)(x-8)=0

suy ra nghiệm là 3 và 8

7) x2-5x-24=0

x2-8x+3x-24=0

x(x-8)+3(x-8)=0

(x+3)(x-8)=0

vậy nghiệm là -3 và 8

22 tháng 3 2020

câu 1:  -3x2 + 5x = 0

suy ra -x(3x-5)=0

sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3

15 tháng 8 2020

a, 15x3 - 15x = 0    

15x(x2-1)=0

15x=0 hoặc x2-1=0  (tự tính nhoa)

b,3x2-6x+3=0

3(x2-2x+1)=0

x-2x+1=0:3=3

x2-2x=3-1=2

x(x-2)=0

x=0 hoặc x-2=0 (tự tính nhoa)

15 tháng 8 2020

Bài làm

a) 15x3-15x=0

<=> 15x( x2 - 1 ) = 0

<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy x = { 0; + 1 }

b) 3x- 6x + 3 = 0

<=> 3( x2 - 2x + 1 ) = 0

<=> x2 - 2x + 1 = 0

<=> ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

Vậy x = 1

c) 5(x - 1) - 3x(1 - x) = 0

<=> 5(x - 1) + 3x(x - 1) = 0

<=> (5 + 3x)(x - 1) = 0

<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)

Vậy x = { -5/3; 1 }

e) -7(x + 2) = 2x(x + 2) 

<=> -7(x + 2 ) - 2x( x + 2 ) = 0

<=> (x + 2)(-7 - 2x) = 0

<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)

Vậy x = { -2; x = -7/2 }

f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)

<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0

<=> (3x + 5)(2x - 3 - x + 1) = 0

<=> (3x + 5)(x - 2) = 0

<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)

Vậy x = { -5/3; 2 }