K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

\(P=\left(3x+y\right)^3-\left(2x-y\right)+\left(x-3y\right)^3\)

    \(=3x^3+3.3x^2.y+3.3x.y^2+y^3\)\(-2x^2-y^2\)\(+x^3-3.x^2.3y+3.x.3y^2-y^3\)

    \(=\left(3x^3+x^3\right)\)\(+\left(9x^2y-9x^2y\right)\)\(+\left(9xy^2-9xy^2\right)\)\(+\left(y^3-y^3\right)\)\(-2x^2-y\)

   = \(4x^3-2x^2-y^2\)

Thay x=\(\dfrac{1}{3},y=-\dfrac{1}{3}\)

\(4.\left(\dfrac{1}{3}\right)^3-2.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{-1}{3}\right)^2\)

=\(4.\dfrac{1}{27}-2.\dfrac{1}{9}-\dfrac{1}{9}=\dfrac{4}{27}-\dfrac{2}{9}-\dfrac{1}{9}=\dfrac{-5}{9}\)

27 tháng 12 2017

a, \(x^2\) + 6x + 5 = 0
=>\(x^2\) + x + 5x +5 = 0
=>x(x + 1) + 5(x + 1) = 0
=>(x + 1)(x + 5) = 0
=> x + 1 =0 hoặc x + 5 =0
=> x = -1 hoặc x = -5

27 tháng 12 2017

c) \(\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}+\dfrac{14-3x}{1-x}\)

\(=\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}-\dfrac{14-3x}{x-1}\)

\(=\dfrac{x+3+2x+5-14+3x}{x-1}\)

\(=\dfrac{6x-6}{x-1}\)

\(=\dfrac{6\left(x-1\right)}{x-1}\)

\(=6.\)

21 tháng 8 2019

\(A=\left(3x-y\right)^2-\left(3x+y\right)^2=\left(3x-y+3x+y\right)\left(3x-y-3x-y\right)\)

\(=6x.\left(-2y\right)=6.\frac{1}{2}.\left(-2.\frac{1}{3}\right)=2.\left(-1\right)=-2\)

21 tháng 8 2019

\(B=\left(2x+3y\right)^2+\left(2x-3y\right)^2\)

\(=\left(2.\frac{1}{2}+3.\frac{1}{3}\right)^2+\left(2.\frac{1}{2}-3.\frac{1}{3}\right)^2\)

\(=\left(1+1\right)^2+\left(1-1\right)^2\)

\(=4+0=4\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

Những bài này sử dụng những hằng đẳng thức đáng nhớ.

Vì $x=-2$ nên $x+2=0$. Ta có:

\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)

\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)

\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)

\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)

--------------------

\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)

\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)

----------------

Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$

\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)

\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)

\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)

\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

13 tháng 8 2016

a,(2x-y)2+(2x+y)2=(2x2-2*2xy+y2)+(2x2+2*2xy+y2)

                            =2x2-4xy+y2+2x2+4xy+y2

                            =4x2+2y2

13 tháng 8 2016

hihi

26 tháng 12 2018

1,4x2.(5x3+2x-1)

=4x2.5x3+4x2.2x-4x2.1

20x5+8x3-4x2

2,4x3y2:x2

=4xy2

3,(15x2y3-10x3y3+6xy):5xy

15x2y3:5xy-10x3y3:5xy+6xy:5xy

3xy2-2x2y2+\(\dfrac{6}{5}\)

26 tháng 12 2018

cảm ơn bạn nhé ^^

13 tháng 12 2022

1: \(=20x^5+8x^3-4x^2\)

2: \(=4xy^2\)

3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)

4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)

6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)

7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)

8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)

9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=4x^2-2x+\dfrac{1}{4}\)

10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)

\(=\dfrac{x^2-7}{2\left(x-1\right)}\)

12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)

15:=x^3-y^3+2