K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

a.

$32^{47}=(2^5)^{47}=2^{5.47}=2^{235}$

$64^{33}=(2^6)^{33}=2^{6.33}=2^{198}$

Vì $2^{235}> 2^{198}$ nên $32^{47}> 64^{33}$

b.

$(\frac{1}{2})^{30}=\frac{1}{2^{30}}=\frac{1}{8^{10}}$

$(\frac{1}{3})^{20}=\frac{1}{3^{20}}=\frac{1}{9^{10}}$

Hiển nhiên $8^{10}< 9^{10}\Rightarrow \frac{1}{8^{10}}> \frac{1}{9^{10}}$

$\Rightarrow (\frac{1}{2})^{30}> (\frac{1}{3})^{20}$

3 tháng 8 2018

\(1.a)\) Ta có: \(\left\{{}\begin{matrix}64^8=\left(8^2\right)^8=8^{16}\\16^{12}=8^{12}.2^{12}=8^{12}.\left(2^3\right)^4=8^{12}.8^4=8^{16}\end{matrix}\right.\)

Có: \(8^{16}=8^{16}\Rightarrow64^8=16^{12}\)

Vậy...

\(b)\) Ta có: \(\left\{{}\begin{matrix}\left(-5\right)^{30}=\left[\left(-5\right)^3\right]^{10}=\left(-125\right)^{10}\\\left(-3\right)^{50}=\left[\left(-3\right)^5\right]^{10}=\left(-243\right)^{10}\end{matrix}\right.\)

Có: \(\left(-125\right)^{10}< \left(-243\right)^{10}\Rightarrow\left(-5\right)^{30}< \left(-3\right)^{50}\)

Vậy...

\(c)\) Ta có: \(\left\{{}\begin{matrix}2^{27}=\left(2^3\right)^9=8^9\\3^{18}=\left(3^2\right)^9=9^9\end{matrix}\right.\)

Có: \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)

Vậy...

\(d)\) Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{1}{25}\right)^{10}=\left[\left(\dfrac{1}{5}\right)^2\right]^{10}=\left(\dfrac{1}{5}\right)^{20}\\\left(\dfrac{1}{125}\right)^8=\left[\left(\dfrac{1}{5}\right)^3\right]^8=\left(\dfrac{1}{5}\right)^{24}\end{matrix}\right.\)

Có: \(\left(\dfrac{1}{5}\right)^{20}< \left(\dfrac{1}{5}\right)^{24}\Rightarrow\left(\dfrac{1}{24}\right)^{10}< \left(\dfrac{1}{125}\right)^8\)

Vậy...

\(e)\)Có: \(32^9=\left(2^5\right)^9=2^{45}< 2^{52}=\left(2^4\right)^{13}=16^{13}< 18^{13}\)

\(\Rightarrow32^9< 18^{13}\)

Vậy...

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{x}{-150}=-\dfrac{6}{x}\)

\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)

\(\Rightarrow x^2=900\)

\(\Rightarrow x=\pm30\)

\(2.\)

\(a.\) \(2x=3y;5y=7z\)\(3x-7y+5z=30\)

Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)

\(\dfrac{y}{14}=2\Rightarrow y=28\)

\(\dfrac{z}{10}=2\Rightarrow z=20\)

Vậy : ..................

29 tháng 6 2017

a) \(\dfrac{15^{30}}{45^{15}}=\dfrac{15^{30}}{3^{15}.15^{15}}=\dfrac{15^{15}}{3^{15}}=5^{15}\)

b) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{8^5.3^8}{2^6.3^6.8^3}=\dfrac{8^2.3^2}{2^6}=\dfrac{2^6.3^2}{2^6}=3^2=9\)

c) \(\dfrac{14^{10}.21^{32}.35^{48}}{10^{10}.15^{32}.7^{96}}=\dfrac{2^{10}.7^{10}.3^{32}.7^{32}.5^{48}.7^{48}}{2^{10}.5^{10}.3^{32}.5^{32}.7^{96}}\)

= \(\dfrac{2^{10}.7^{58}.3^{32}.5^{48}}{2^{10}.5^{42}.3^{32}.7^{96}}=\dfrac{5^6}{7^{38}}\) ( Câu này làm bừa, có lẽ sai đấy :)) )

2. So sánh

a) 3200 = 9100

2300 = 8100

Vì 9100 > 8100 nên 3200 < 2300

b) 912 = 7294

268 = 6764

Vì 7294 > 6764 nên 912 > 268

c) 224 = 88

316 = 98

Vì 88 < 98 nên 224 < 316

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)

9 tháng 9 2017

a) Ta có: 1020= (102)10=10010>9010

\(\Rightarrow\)1020>9010

b) Ta có: (-5)30 = (-53)10 =(-125)10
và (-3)50 = (-35)10 = (-243)10
Mà (-125)10 < (-243)10 => (-5)10 < (-3)50

c)- 0,320=(0,32)10=0,0910.

Do 0,09<0,1 =>0,0910<0,110.

=>0,110>0,320.

10 tháng 9 2017

d) Ta có : \(\left(\dfrac{1}{16}\right)^{10}=\left(\dfrac{1}{2^4}\right)^{10}=\dfrac{1}{2^{40}}\)

\(\left(\dfrac{1}{2}\right)^{50}=\dfrac{1}{2^{50}}\)

\(2^{40}< 2^{50}\Rightarrow\dfrac{1}{2^{40}}>\dfrac{1}{2^{50}}\Rightarrow\left(\dfrac{1}{16}\right)^{10}>\left(\dfrac{1}{2}\right)^{50}\)

14 tháng 6 2017

a.

| x | = 5,6

=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)

Vậy \(x\in\left\{-5,6;5,6\right\}\)

b, \(\left|x-3,5\right|=5\)

=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)

Vậy \(x\in\left\{-1,5;8,5\right\}\)

c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)

d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)

=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)

=> \(\left|4x\right|=13,75\)

=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)

Vậy \(x\in\left\{-3,4375;3,4375\right\}\)

14 tháng 6 2017

e, ( x - 1 ) 3 = 27

=> x - 1 = 3

=> x = 4

Vậy x = 4

f, ( 2x - 3)2 = 36

=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)

Vậy x\(\in\left\{-1,5;4,5\right\}\)

g, \(5^{x+2}=625\)

=> \(5^{x+2}=5^4\)

=> x + 2 = 4

=> x = 2

Vậy x = 2

h, ( 2x - 1)3 = -8

=> 2x - 1 = -2

=> x = \(\dfrac{-1}{2}\)

Vậy x = \(\dfrac{-1}{2}\)

i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)

=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)

=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)

=> \(\dfrac{1}{32.2^{31}}=2^x\)

=> \(\dfrac{1}{2^{36}}=2^x\)

=> x = -36

Vậy x = -36

21 tháng 10 2017

a)  \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)

\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)

Mà \(\frac{-1}{125}>\frac{-1}{243}\)

\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b)\(2^{27}=8^9;3^{18}=9^9\)

8 tháng 10 2020

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)

c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)

\(2^{30}=\left(2^3\right)^{10}=8^{10}\)

\(4^{30}=\left(4^3\right)^{10}=64^{10}\)

Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)

\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)

Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)

\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

24 tháng 6 2017

Bài 1:

a, \(\dfrac{x+5}{x}=\dfrac{4}{3}\)

\(\Rightarrow3x+15=4x\\ \Rightarrow4x-3x=15\\ \Rightarrow x=15\)

b, \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

\(\Rightarrow\left(x-20\right).\left(x+70\right)=\left(x+40\right)\left(x-10\right)\)

\(\Rightarrow x^2+70x-20x-1400=x^2-10x+40x-400\)

\(\Rightarrow x^2-x^2+70x-20x+10x-40x=-400+1400\)

\(\Rightarrow20x=1000\Rightarrow x=50\)

c, \(4^x=\dfrac{1.2.3.....31}{4.6.8.....64}\)

\(\Rightarrow4^x=\dfrac{1}{2.2.2.2.....2.2.64}\) (có 30 số 2)

\(\Rightarrow4^x=\dfrac{1}{2^{30}.4^3}\Rightarrow4^x=\dfrac{1}{4^{15}.4^3}\)

\(\Rightarrow4^x=\dfrac{1}{4^{18}}\)

\(\Rightarrow4^x=4^{-18}\)

\(4\ne-1;4\ne0;4\ne1\) nên \(x=-18\)

Chúc bạn học tốt!!!

24 tháng 6 2017

a , \(\dfrac{x+5}{x}=\dfrac{4}{3}\Leftrightarrow3\left(x+5\right)=4x\)

<=> 3x+15=4x

<=> x= 15

b , \(\dfrac{x-20}{x-10}=\dfrac{x+40}{x+70}\)

<=> \(\dfrac{x-10}{x-10}-\dfrac{10}{x-10}=\dfrac{x+70}{x+70}-\dfrac{30}{x+70}\)

<=> \(1-\dfrac{10}{x-10}=1-\dfrac{30}{x+70}\)

<=> \(\dfrac{10}{x-10}=\dfrac{30}{x+70}\Leftrightarrow\dfrac{1}{x-10}=\dfrac{3}{x+70}\)

<=> (x+70)=3(x-10)

<=> x+70 = 3x-30

<=> 100=2x

<=> x= 50