K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Bài làm 

\(2x.\left(x-3\right)=x-3\)

\(2x.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(2x-1\right).\left(x-3\right)=0\)

\(\orbr{\begin{cases}2x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=3\end{cases}}}\)

Vậy phương trình có 2 nghiêm \(x\in\left\{\frac{1}{2};3\right\}\)

5 tháng 7 2020

1/2 và 3 nha chế 

4 tháng 1 2017

Hòa tan hoàn toàn m gam một oxit sắt bằng hung dịch H2So4 đặc nóng thu a mol So2 duy nhất ,Mặt khác , sau khi khử hoàn toàn m gam oxit trên bằng CO ở nhiệt độ cao rồi cho toàn bộ lượng fe tạo thành vào h2so4 đặc nóng  dư thu 9 a mol so2 duy nhất ,Tìm công thức oxit sắt

7 tháng 2 2018

ĐKXĐ : \(\hept{\begin{cases}x^2+x-6\ne0\\x^2+4x+3\ne0\\2x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-2\right)\ne0\\\left(x+1\right)\left(x+3\right)\ne0\\x\ne\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x\ne2;-3\\x\ne-1;-3\\x\ne\frac{1}{2}\end{cases}}}}\)

TXĐ : \(x\ne\left\{-3;-1;\frac{1}{2};2\right\}\)

\(pt\Leftrightarrow\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{3x+9}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{1}{x^2-x-2}=\frac{1}{1-2x}\)

\(\Leftrightarrow x^2-x-2-1+2x=0\)

\(\Leftrightarrow x^2+x-3=0\)

\(\Leftrightarrow\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{1-\sqrt{13}}{2}\right)\left(x+\frac{1+\sqrt{13}}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{2}\\x=\frac{-\sqrt{13}-1}{2}\end{cases}}\)

7 tháng 2 2018

\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4+3}=-\frac{3}{2x-1}\)

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{3x+9}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{1}{x-2}=-\frac{1}{2x-1}\)

<=> x-2=1-2x <=> 3x=3

=> x=1

Đáp số: x=1

 Ta có:\(x^2-x-20=0\\ \Leftrightarrow x^2-5x+4x-20=0\\ \Leftrightarrow x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+4\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

Vậy phương trình tập nghiệm \(x\in\left\{5;-4\right\}\)

26 tháng 2 2020

\(x^2-x-20=0\)

\(x^2+4x-5x-20=0\)

\(x\left(x+4\right)-5\left(x+4\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}}\)

Vậy x=5; x= -4 là hai nghiệm của phương trình

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

17 tháng 8 2018

\(5\left(x+3\right)-2x\left(x+3\right)=0\)

<=> \(\left(5-2x\right)\left(x+3\right)=0\)

<=> \(\hept{\begin{cases}5-2x=0\\x+3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

\(4x\left(x-2018\right)-x+2018=0\)

<=> \(4x\left(x-2018\right)-\left(x-2018\right)=0\)

<=> \(\left(4x-1\right)\left(x-2018\right)=0\)

<=> \(\hept{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

<=> \(\left(x+1\right)\left(x+1-1\right)=0\)

<=> \(\left(x+1\right).x=0\)

<=> \(\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

học tốt

17 tháng 8 2018

a) \(5\left(x+3\right)-2x\left(3+x\right)=0\)

\(5\left(x+3\right)+2x\left(x+3\right)=0\)

\(\left(x+3\right)\left(5+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}\)

b) \(4x\left(x-2018\right)-x+2018=0\)

\(4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\left(x-2018\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)

c) \(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+1-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)