K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0

<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0

<=> (3x + 2y + 2)2 - x2 = -4

<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4

<=> (2x + 2y + 2)(4x + 2y + 2) = -4

<=> (x + y + 1)(2x + y + 1) = -1

Xét các TH xảy ra <=>

\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)

\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)

(tự tính)

10 tháng 9 2020

Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)

    \(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :

    \(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ 

Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)

Ta luôn có \(x+k>x-k\) với \(k>0\)

Xét các trường hợp với \(x-k\)\(x+k\)là các số nguyên được 

\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và  \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)

Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và  \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)

Học tốt

9 tháng 9 2020

Pt <=> \(x^2-2xy-xy+2y^2=-6\)

<=> x( x - 2y) - y ( x - 2y) = -6 

<=> ( x - 2y) ( x - y) = - 6 = -3 .2 = -2. 3= -6.1 = -1.6

Vì x; y là số tự nhiên => 2y > y => x - 2y<0 < x - y 

=> Có các TH sau: 

Th1: x - 2y = - 3 và x - y = 2 <=> y = 5 và x = 7 

Th2: x - 2y =- 2 và x - y = 3 <=> x = 8; y = 5 

Th3:...

Th4:...

25 tháng 10 2020

tải Qanda về mà hỏi

3 tháng 7 2017

\(x^2+2y^2+3xy+8=9x+10y\)

\(\Leftrightarrow4x^2+8y^2+12xy+32-36x-40y=0\)

\(\Leftrightarrow4x^2+12x\left(y-3\right)+\left(8y^2-40y+32\right)=0\)

\(\Leftrightarrow4x^2+12x\left(y-3\right)+9\left(y-3\right)^2-\left(y^2-14y+49\right)=0\)

\(\Leftrightarrow\left[2x-3\left(y-3\right)\right]^2-\left(y-7\right)^2=0\)

\(\Leftrightarrow\left[2x-3\left(y-3\right)-\left(y-7\right)\right].\left[2x-3\left(y-3\right)+\left(y-7\right)\right]=0\)

\(\Leftrightarrow\left(2x-4y+16\right)\left(2x-2y+2\right)=0\)

\(\Leftrightarrow\left(x-2y+8\right)\left(x-y+1\right)=0\)

-TH1:  \(x-2y+8=0\)  \(\Leftrightarrow x=2y-8\)  thay vào pt đề cho tìm được x, y.

Tương tự cho TH2

21 tháng 5 2017

ê cái này là lớp mấy vậy

22 tháng 5 2017

lớp 9 đó bạn !!!

22 tháng 10 2019

6x2+19y2+24x-2y+12xy-725=0

\(\Leftrightarrow6x^2+\left(12y+24\right)x-2y+19y^2-725=0\)

\(\Leftrightarrow\Delta=\left(12y+24\right)^2-4.6.\left(-2y+19y^2-725\right)\)

\(\Leftrightarrow144y^2+576y+576+48y-456y^2+17400\)

bữa sau sẽ trả lời tiếp

18 tháng 3 2020

Với \(x,y\in Z\)

\(6x^2+19y^2+24x-2y+12xy-725=0\)

\(\Leftrightarrow6x^2+\left(12xy+24x\right)+19y^2-2y-725=0\)

\(\Leftrightarrow6x^2+\left(12y+24\right)x+19y^2-2y-725=0\)

\(\Leftrightarrow6x^2+2\left(6y+12\right)x+19y^2-2y-725=0\) \(\left(a=6,b'=6y+12,c=19y^2-2y-725\right)\)

\(\Delta'=\left(6y+12\right)^2-6\left(19y^2-2y-725\right)=36y^2+144y+144-114y^2+12y+4350\)

\(\Delta'=-78y^2+156y+4494=-78\left(y^2-2y+1\right)+78+4494=-78\left(y-1\right)^2+4572\)

PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-78\left(y-1\right)^2+4572\ge0\Leftrightarrow-78\left(y-1\right)^2\ge-4572\)

\(\Leftrightarrow\left(y-1\right)^2\le\frac{762}{13}\)

\(\Leftrightarrow-\frac{\sqrt{9906}}{13}\le y-1\le\frac{\sqrt{9906}}{13}\), mà \(y\in Z\) \(\Rightarrow-7\le y-1\le7\left(1\right)\)

Với PT có nghiệm, ta có: \(x=\frac{-b'\pm\sqrt{\Delta'}}{a}\)

\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{-\left(12y+24\right)}{6}=-2y-4\\x_1x_2=\frac{c}{a}=\frac{19y^2-2y-725}{6}=\frac{y^2-2y+1+18y^2-726}{6}=3y^2-121+\frac{\left(y-1\right)^2}{6}\end{cases}}\)

Để \(x\in Z\), thì \(\hept{\begin{cases}x_1+x_2\in Z\\x_1x_2\in Z\end{cases}}\Leftrightarrow\hept{\begin{cases}-2y-4\in Z\\3y^2-121+\frac{\left(y-1\right)^2}{6}\in Z\end{cases}\Leftrightarrow}\frac{\left(y-1\right)^2}{6}\in Z\) (vì \(y\in Z\))

Và \(\Delta'\) là số chính phương.

\(\frac{\left(y-1\right)^2}{6}\in Z\Leftrightarrow\left(y-1\right)^2⋮6\Leftrightarrow y-1⋮6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow y-1\in\left\{-6;0;6\right\}\Leftrightarrow y\in\left\{-5;1;7\right\}\)

\(\Delta'\) là số chính phương \(\Leftrightarrow-78\left(y-1\right)^2+4572\) là số chính phương

- Thử \(y=-5\), thì \(\Delta'=-78\left(-5-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)

- Thử \(y=1\), thì \(\Delta'=-78\left(1-1\right)^2+4572=4572\) (4572 không phải là số chính phương)

- Thử \(y=7\), thì \(\Delta'=-78\left(7-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)

Từ đó, với \(y\in\left\{-5;7\right\}\) thì \(\Delta'=1764\) là số chính phương. \(\Rightarrow\sqrt{\Delta'}=42\)

PT có nghiệm thì:

\(x=\frac{-b'\pm\sqrt{\Delta'}}{a}=\frac{-6y-12\pm42}{6}=-y-2\pm7\)

- Với \(y=-5\), thì \(x=5-2\pm7\Leftrightarrow x\in\left\{-4;10\right\}\) (tmđk)

- Với \(y=7\), thì \(x=-7-2\pm7\Leftrightarrow x\in\left\{-16;-2\right\}\) (tmđk)

Vậy phương trình có các nghiệm nguyên \(\left(x;y\right)=\left(-4;-5\right),\left(10;-5\right),\left(-16;7\right),\left(-2;7\right)\).

7 tháng 9 2020

x2 + y2 = 2x2y2

<=> 2x2 + 2y2 - 4x2y2 = 0

<=> 2x2(1 - 2y2) - (1 - 2y2) = -1

<=> (2x2 - 1)(2y2 - 1) = 1 = 1.1

Lập bảng: 

2x2 - 1 1 -1
2y2 - 1 1 -1
 x \(\pm\)1 0
 y \(\pm\)1 0


Vậy ...

7 tháng 9 2020

OK cảm ơn nha