Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Câu a )
\(2x^4+3x^2-2=0\left(1\right)\)
Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:
\(2t^2+3t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)
\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)
\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)
Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)
Câu b )
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)
\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)
\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)
\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)
\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)
\(\Leftrightarrow3m^2+6m+3=16m\)
\(\Leftrightarrow3m^2-10m+3=0\)
\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)
Theo đề bài thì ta có:
\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)
\(\Leftrightarrow x_2=7-2m\)
Thế lại vô (2) ta được
\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)
\(\Leftrightarrow4m^2-17m+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)
\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)
<=> (m.x3 - m) + (x3 - x) + (3mx2 - 3m) - (x2 - 1) = 0
<=> m(x - 1)(x2 + x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0
<=> (x - 1).[m(x2 + x+ 1) + x(x+1) + 3m(x+ 1) - (x+1)] = 0
<=> (x - 1).(mx2 + mx + m + x2 + x + 3mx + 3m - x - 1) = 0
<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0 (*)
b) (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0 (1)
Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt
<=> m+ 1 \(\ne\) 0 và \(\Delta\)' > 0 và x1.x2 > 0 và x1 + x2 < 0 trong đó x1; x2 là hai nghiệm của (1)
+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1
+) \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2 - 4m2 - 3m + 1 = -3m + 1 > 0 => m < 1/3
+) Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{4m}{m+1}\); x1.x2 = \(\frac{4m-1}{m+1}\)
=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0
=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m và m + 1 cùng dấu
=> m > 0 hoặc m < -1
Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0 < m < 1/3
Vậy...
a: Δ=(2m-1)^2-4*(-1)(m-m^2)
=4m^2-4m+1+4m-4m^2=1>0
=>(1) luôn có hai nghiệm phân biệt
b: m=x1-2x1x2+x2-2x1x2
=x1+x2-4x1x2
=2m-1+4(m-m^2)
=>m-2m+1-4m+4m^2=0
=>4m^2-5m+1=0
=>m=1 hoặc m=1/4
c: x1+x2-2x1x2
=2m-1+2m-2m^2=-2m^2+4m-1
=-2m^2+4m-2+1
=-2(m-1)^2+1<=1
PT có 2 nghiệm phân biệt
`<=>(4m+3)^2-8(2m^2-1)>0`
`<=>16m^2+24m+9-16m^2+8>0`
`<=>24m+17>0`
`<=>24m> -17`
`<=>m>(-17)/24`
PT có 1 nghiệm =1 thì ta thay x=1 thì pt =
`=>2.1-(4m+3).1+2m^2-1=0`
`<=>2m^2-1-(4m+3)+2=0`
`<=>2m^2+1-4m-3=0`
`<=>2m^2-4m-2=0`
`<=>m^2-2m-1=0`
`a=1,b=-2,c=-1`
`Delta'=1+1=2`
`=>x_1=1+sqrt2(tm),1-sqrt2(tm)`
Vậy `m=1+-sqrt2` thì PT có 2 nghiệm phân biệt có 1 nghiệm = 1
PT có 1 nghiệm là `1 <=> 2-(4m+3)+2m^2-1=0`
`<=> 2m^2-4m-2=0`
`<=>m=1 \pm \sqrt2`.