K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

2x+15=10-3x

=>  5x = -5

=>  x  =  -1

2 tháng 7 2019

Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?

2 tháng 7 2019

Nguyễn Công Tỉnh đúng r bạn, mình sửa lại r

13 tháng 10 2019

\(7=\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=\frac{\left(3x^2-2x+15\right)-\left(3x^2-2x+8\right)}{\sqrt{3x^2-2x+15}-\sqrt{3x^2-2x+8}}\\ \)

\(=\frac{7}{a-b}\)=> a-b = 1 và a+b=7

=> dễ dàng tìm x 

14 tháng 7 2018

a) x2-3x+10>0

Có x2-3x+10=x2-2x\(\frac{3}{2}\)+\(\frac{9}{4}\)+\(\frac{31}{4}\)=(x-\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0 với mọi x 

=> x2-3x+10>0

b) 3x2+5x+20>0

3x2+5x+20=3(x2+\(\frac{5}{3}\)x+\(\frac{20}{3}\))=3(x2+2.x.\(\frac{5}{6}\)+\(\frac{25}{36}\)+\(\frac{215}{36}\))=3(x+\(\frac{5}{6}\))2+\(\frac{215}{12}\)>0 với mọi x

=>3x2+5x+20 >0

c) -2x2-5x-15<0

 -2x2-5x-15=-2(x2+\(\frac{5}{2}\)x+\(\frac{15}{2}\))=-2(x2+2.x.\(\frac{5}{4}\)+\(\frac{25}{20}\)+\(\frac{25}{4}\))=-2(x+\(\frac{5}{4}\))-\(\frac{25}{2}\)<0 với mọi x

 -2x2-5x-15<0

14 tháng 7 2018

thank bn

14 tháng 7 2018

a) Ta có: \(x^2-3x+10=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\)

Vậy x2 - 3x + 10 > 0 (đpcm)

b) Tương tự

14 tháng 7 2018

thank bn

6 tháng 10 2019

Park Ji Woo ghi rõ đề ra bn ơi

6 tháng 10 2019

GIẢI CÁC PHƯƠNG TRÌNH NHƯ KIỂU TÌM X Á

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

NV
14 tháng 10 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{3x^2-2x+15}=a>0\\\sqrt{3x^2-2x+8}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=7\)

Pt trở thành:

\(a+b=a^2-b^2\)

\(\Leftrightarrow a+b=\left(a-b\right)\left(a+b\right)\)

\(\Rightarrow a-b=1\Rightarrow a=b+1\)

\(\Rightarrow\sqrt{3x^2-2x+15}=\sqrt{3x^2-2x+8}+1\)

\(\Leftrightarrow3x^2-2x+15=3x^2-2x+9+2\sqrt{3x^2-2x+8}\)

\(\Leftrightarrow\sqrt{3x^2-2x+8}=3\)

\(\Leftrightarrow3x^2-2x-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{3}\end{matrix}\right.\)

20 tháng 7 2018

câu a nè bạn: http://123link.pw/O59k8hdZ

20 tháng 7 2018

cho đúng nha

NV
25 tháng 11 2019

a/ ĐKXĐ: \(-\sqrt{15}\le x\le\sqrt{15}\)

Đặt \(15-x^2=a\ge0\)

\(\sqrt{10+a}-\sqrt{a}=2\Leftrightarrow\sqrt{10+a}=2+\sqrt{a}\)

\(\Leftrightarrow10+a=a+4+4\sqrt{a}\)

\(\Leftrightarrow2\sqrt{a}=7\Rightarrow a=\frac{49}{4}\Rightarrow15-x^2=\frac{49}{4}\)

\(\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\pm\frac{\sqrt{11}}{2}\)

b/ ĐKXĐ: \(x\ge-\frac{1}{3}\)

Do \(\sqrt{3x+1}+1>0\) , nhân cả 2 vế của pt với nó và rút gọn ta được:

\(3x\sqrt{3x+10}=3x\left(\sqrt{3x+1}+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\Rightarrow x=0\\\sqrt{3x+10}=\sqrt{3x+1}+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3x+10=3x+2+2\sqrt{3x+1}\)

\(\Leftrightarrow\sqrt{3x+1}=4\Rightarrow3x+1=16\)

NV
25 tháng 11 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

d/ Đề đúng thế này thì nghĩ ko ra cách giải :(