K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

\(2\left(x+1\right)\left(1-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\1-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy \(S=\left\{-1;1\right\}\)

21 tháng 8 2021

giải

x+1=0

1-x=0

vây ta có -1và1

17 tháng 5 2021

x( x - 1 )( x - 2 )( x - 3 ) + 1 = 0

<=> [ x( x - 3 ) ][ ( x - 1 )( x - 2 ) ] + 1 = 0

<=> ( x2 - 3x )( x2 - 3x + 2 ) + 1 = 0

<=> ( x2 - 3x + 1 - 1 )( x2 - 3x + 1 + 1 ) + 1 = 0

<=> ( x2 - 3x + 1 )2 - 1 + 1 = 0

<=> ( x2 - 3x + 1 )2 = 0 <=> x2 - 3x + 1 = 0

Δ = b2 - 4ac = 9 - 4 = 5 > 0 nên pt có hai nghiệm phân biệt \(x_1=\frac{3+\sqrt{5}}{2};x_2=\frac{3-\sqrt{5}}{2}\)

Vậy S = { \(\frac{3\pm\sqrt{5}}{2}\)}

18 tháng 5 2021

Dùng kiến thức lớp 9 làm gì hả Quỳnh? Đây là lớp 8 mà.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)+1=0\).

\(\Leftrightarrow\left[x\left(x-3\right)\right]\left[\left(x-1\right)\left(x-2\right)\right]+1=0\).

\(\Leftrightarrow\left(x^2-3x\right)\left(x^2-3x+2\right)+1=0\).

Đặt \(x^2-3x+1=a\), phương trình trở thành:

\(\left(a-1\right)\left(a+1\right)+1=0\).

\(\Leftrightarrow a^2-1+1=0\).

\(\Leftrightarrow a^2=0\).

\(\Leftrightarrow a=0\).

\(\Leftrightarrow x^2-3x+1=0\).

\(\Leftrightarrow\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{5}{4}=0\).

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\).

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{5}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{5}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\).

Vậy phương trình có tập nghiệm: \(S=\left\{\frac{3\pm\sqrt{5}}{2}\right\}\).

19 tháng 8 2020

Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

19 tháng 8 2020

\(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)

+) x2 + x = - 4

<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4

Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x

=> x2 + x + 4 = 0 ktm

Vậy pt = 0 <=> x = 1

16 tháng 4 2017

có cái j đó sai sai đó ban ơi

16 tháng 4 2017

x<3 là thỏa mãn

14 tháng 4 2018

Nếu:    \(x-1\ge0\)  \(\Leftrightarrow\)\(x\ge1\)  thì:   \(\left|x-1\right|=x-1\)

Khi đó ta có:      \(x^2-3x+2+x-1=0\)

                 \(\Leftrightarrow\)          \(\left(x-1\right)^2=0\)

                 \(\Leftrightarrow\)              \(x-1=0\)

                 \(\Leftrightarrow\)                \(x=1\)  (thỏa mãn)

Nếu   \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\)  thì        \(\left|x-1\right|=1-x\)

Khi đó ta có:      \(x^2-3x+2+1-x=0\)

                   \(\Leftrightarrow\)     \(x^2-4x+3=0\)

                   \(\Leftrightarrow\)  \(\left(x-1\right)\left(x-3\right)=0\)

                   \(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)

Vậy....

14 tháng 4 2018

Lập bảng xét dấu :

x 1 
x-1-0+

+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)

\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)

\(\Leftrightarrow x^2-3x+2+x-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)

\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)

\(\Leftrightarrow x^2-3x+2+1-x=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )

Vậy phương trình có tập nghiệm  \(S=\left\{1\right\}\)

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

6 tháng 2 2017

a/ (x+5)(3x+2)^2=x^2(x+5)

(x+5)(9x^2+12x+4)=x^2(x+5)

9x^3+12x^2+4x+45x^2+60x+20=x^3+5x^2

9x^3-x^3+12x^2+45x^2-5x^2+4x+60x=-20

8x^3+52x^2+64x+20=0

........................

14 tháng 4 2020

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

22 tháng 7 2021

a, 2 (3x - 1) = x + 3

<=> 6x - 2 - x - 3 = 0

<=> 5x - 5 = 0 

<=> x = 1.

b, x2 + 4x + 3 = 0

<=> x2 + 3x + x + 3 = 0

<=> x (x + 3) + (x + 3) = 0

<=> (x + 1) (x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

c, |x - 13| = 15

\(\Leftrightarrow\orbr{\begin{cases}x-13=15\\x-13=-15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=28\\x=-2\end{cases}}\)

22 tháng 7 2021

Trả lời:

a, 2 ( 3x - 1 ) = x + 3

<=> 6x - 2 = x + 3

<=> 6x - x = 3 + 2

<=> 5x = 5

<=> x = 1

Vậy x = 1 là nghiệm của pt.

b, x2 + 4x + 3 = 0

<=> x2 + x + 3x + 3 = 0

<=> ( x2 + x ) + ( 3x + 3 ) = 0

<=> x ( x + 1 ) + 3 ( x + 1 ) = 0

<=> ( x + 3 ) ( x + 1 ) = 0

<=> x + 3 = 0 hoặc x + 1 = 0

<=> x = - 3 hoặc x = - 1

Vậy x = - 3; x = - 1 là nghiệm của pt.

c, | x - 13 | = 15

=> x - 13 = 15 hoặc x - 13 = - 15

<=> x = 28 hoặc x = - 2

Vậy x = 28; x = - 2 là nghiệm của pt.