K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2020

\(\frac{cos^2x-sin^2x}{cot^2x-tan^2x}-cos^2x=\frac{cos^2x-sin^2x}{\frac{cos^2x}{sin^2x}-\frac{sin^2x}{cos^2x}}-cos^2x\)

\(=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{cos^4x-sin^4x}-cos^2x=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}-cos^2x\)

\(=cos^2x.sin^2x-cos^2x=cos^2x\left(sin^2x-1\right)\)

\(=cos^2x.\left(-cos^2x\right)=-cos^4x\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Lời giải:

Bạn xem lại đề. 2 vế không bằng nhau. Ta có:

\(\frac{\sin 2x-\cos 2x}{\sin 2x+\cos 2x}=\frac{(\sin 2x-\cos 2x)(\cos 2x-\sin 2x)}{(\sin 2x+\cos 2x)(\cos 2x-\sin 2x)}=\frac{-(\sin 2x-\cos 2x)^2}{\cos ^22x-\sin ^22x}=\frac{-(\sin ^22x+\cos ^22x-2\sin 2x\cos 2x)}{\cos 4x}\)

\(=\frac{-(1-\sin 4x)}{\cos 4x}=\frac{\sin 4x-1}{\cos 4x}\)

NV
9 tháng 6 2020

\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)

\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)

\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)

\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(=2\left(sin^2x+cos^2x\right)=2\)

28 tháng 4 2020

\(VT=\frac{\frac{\sin^2x}{\cos^2x}-\sin^2x}{\frac{\cos^2x}{\sin^2x}-\cos^2x}=\frac{\frac{\sin^2x-\sin^2x.\cos^2x}{\cos^2x}}{\frac{\cos^2x-\cos^2x.\sin^2x}{\sin^2x}}\)

\(=\frac{\sin^2x}{\cos^2x}.\frac{\sin^2x-\sin^2x.\cos^2x}{\cos^2-\cos^2x.\sin^2x}\)

\(=\frac{\sin^2x}{\cos^2x}.\frac{\tan^2x-\sin^2x}{\cos^2x}=\frac{\sin^2x}{\cos^2x}.\left(\frac{\tan^2x}{\cos^2x}-\tan^2x\right)\)

\(1+\tan^2x=\frac{1}{\cos^2x}\Rightarrow\frac{\tan^2x}{\cos^2x}=\tan^2x\left(1+\tan^2x\right)\)

\(\Rightarrow VT=\tan^2x.\tan^4x=\tan^6x=VP\)

NV
28 tháng 4 2020

\(\frac{tan^2x-sin^2x}{cot^2x-cos^2x}=\frac{sin^2x.cos^2x\left(tan^2x-sin^2x\right)}{sin^2x.cos^2x\left(cot^2x-cos^2x\right)}=\frac{sin^4x\left(1-cos^2x\right)}{cos^4x\left(1-sin^2x\right)}=\frac{sin^6x}{cos^6x}=tan^6x\)

23 tháng 9 2019

(2x).(2x).(2x).(2x)=(2x)4

23 tháng 9 2019

Viết thành dạng lũy thừa của các tích sau:

(2x).(2x).(2x).(2x) = (2x)^4

AH
Akai Haruma
Giáo viên
21 tháng 3 2018

Lời giải:

Ta có:

\(\frac{\tan ^2x-\cos ^2x}{\sin ^2x}+\frac{\cot ^2x-\sin ^2x}{\cos ^2x}\)

\(=\frac{\frac{\sin ^2x}{\cos ^2x}-\cos ^2x}{\sin ^2x}+\frac{\frac{\cos ^2x}{\sin ^2x}-\sin ^2x}{\cos ^2x}\) \(=\frac{1}{\cos ^2x}-\frac{\cos ^2x}{\sin ^2x}+\frac{1}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}\)

\(=\frac{\sin ^2x+\cos ^2x}{\cos ^2x}-\frac{\cos ^2x}{\sin ^2x}+\frac{\sin ^2x+\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}\)

\(=1+\frac{\sin ^2x}{\cos ^2x}-\frac{\cos ^2x}{\sin ^2x}+1+\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}\)

\(=1+1=2\)

Vậy biểu thức đã cho độc lập với $x$