K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 10 2018
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
KT
1
TT
2
AD
14 tháng 7 2021
x.x2.x3...x99 phải bằng bao nhiêu thì mới làm đc chứ
Thế này đố ai làm đc
TT
14 tháng 7 2021
ko có bằng bao nhiêu cả, đề nâng cao mà có = thì mik ko cần hỏi cũng bt
23 tháng 1 2017
Nhiều thế bạn
Đăng từ từ thôi chứ
Đăng nhiều thế này làm sao mà xong kịp được
SN
1
NM
0
Đặt \(A=1+2+...+2^{97}+2^{98}+2^{99}\)\(\Rightarrow\)\(2^{100}-A=2^{100}-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)\)
Ta có: \(2A=2+2^2...+2^{98}+2^{99}+2^{100}\)
Lấy \(2A-A\)theo vế, ta có:
\(2A-A=\left(2+2^2...+2^{98}+2^{99}+2^{100}\right)-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)\)
\(\Leftrightarrow2A-A=2+2^2...+2^{98}+2^{99}+2^{100}-1-2-...-2^{97}-2^{98}-2^{99}\)
\(\Leftrightarrow A=2^{100}-1\)
\(\Rightarrow2^{100}-A=2^{100}-2^{100}+1=1\)
Vậy \(2^{100}-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)=1\)