Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{3}=2\Rightarrow\sqrt{3}=2-x\Rightarrow3=\left(2-x\right)^2\Rightarrow x^2-4x+1=0\)
Ta có:
\(B=x^5-4x^4+x^4-4x^3+x^3+5x^2+x^2-20x+5+2013\)
\(\Rightarrow B=x^5-4x^4+x^3+x^4-4x^3+x^2+5x^2-20x+5+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3.0+x^2.0+5.0+2013=2013\)
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)
Do đó: Phươbg trình vô nghiệm
b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)
Do đó: Phương trình vô nghiệm
c: \(\Leftrightarrow x^2-4x+4-3=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\)
hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
d: \(\Leftrightarrow3x^2+6x+x+2=0\)
=>(x+2)(3x+1)=0
=>x=-2 hoặc x=-1/3