K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

\(\Delta_1:mx+y-19=0\Rightarrow\overrightarrow{n_1}\left(m;1\right)\)

\(\Delta_2:\left(m-1\right)x+\left(m+1\right)y-20=0\Rightarrow\overrightarrow{n_2}\left(m-1;m+1\right)\)

Để 2 đường thảng trên vuông góc thì : \(\overrightarrow{n_1}\perp\overrightarrow{n_2}\)

⇔m.(m-1)+(m+1) =0

\(m^2-m+m+1=0\)

\(m^2+1=0\)

\(m^2=-1\)(vô lí )

Vậy không có giá trị m nào thỏa mãn để 2 đường thẳng trên vuông góc.

Chúc bn hok tốt nhé !

NV
1 tháng 5 2020

33.

Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt

\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)

41.

\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt

\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)

Vậy hai đường thẳng cắt nhau với mọi m

NV
1 tháng 5 2020

21.

\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:

\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)

Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

31.

\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp

\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt

Để hai đường thẳng song song:

\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)

15 tháng 8 2017

Đường thẳng Δ1 có vectơ pháp tuyến là XBEqzT0xVXIs.png.

Đường thẳng Δ2 có vectơ pháp tuyến là PdCsUPtObOfy.png.

Hai đường thẳng vuông góc khi và chỉ khi yq6OWkE4C5hg.png

Suy ra : m( m-1) + m+ 1= 0 hay m2+1 = 0 phương trình vô nghiệm.

Vậy không có giá trị của m để hai đường thẳng vuông góc.

Chọn C.

18 tháng 4 2020

1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t

\(\Delta\left(1\right):10x+5y-1=0\)

\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)

\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)

Ta có phương trình tổng quát của \(\Delta\left(2\right)\)\(x+y-3=0\)

\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)

\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)

Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''

\(=18^o26'5,82''\)

bài 2,3,4 tương tự vậy.

28 tháng 4 2020

Bài 1:

\(\overrightarrow{u_{\Delta1}}=\left(2;-3\right)\Rightarrow\overrightarrow{n_{\Delta1}}=\left(3;2\right)\)

\(\Rightarrow\Delta_1:3\left(x-4\right)+2\left(y-1\right)=0\)

\(\Delta_1:3x+2y-14=0\)

\(\Rightarrow\Delta_1\equiv\Delta_2\)

Bài 6:

\(\frac{11}{12}\ne-\frac{12}{11}\Rightarrow\Delta_1\equiv\Delta_2\)

Bài 10:

\(\overrightarrow{AB}=\overrightarrow{u_{AB}}=\left(4;2\right)\)

NV
29 tháng 4 2020

2.

Denta và d lần lượt nhận \(\left(m-1;2\right)\)\(\left(2;m-1\right)\) là vtpt

Để denta và d song song

\(\Leftrightarrow\left(m-1\right)\left(m-1\right)=2.2\) (nghĩa là \(ad=bc\) ấy)

\(\Leftrightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

3.

D1 và d2 lần lượt nhận \(\left(m;1\right)\)\(\left(1;-1\right)\) là các vtpt

Để d1 vuông góc d2

\(\Leftrightarrow m.1+1\left(-1\right)=0\) (tích vô hướng 2 vtpt bằng 0)

\(\Leftrightarrow m=1\)

NV
29 tháng 4 2020

1.

\(\overrightarrow{AB}=\left(3;2\right);\overrightarrow{AC}=\left(1;-5\right);\overrightarrow{CB}=\left(2;7\right)\)

Gọi M, N, P lần lượt là trung điểm AB; AC; BC

\(\Rightarrow M\left(\frac{7}{2};2\right);N\left(\frac{5}{2};-\frac{3}{2}\right);P\left(4;-\frac{1}{2}\right)\)

Trung trực AB vuông góc AB và đi qua M nên nhận \(\left(3;2\right)\) là 1 vtpt

Phương trình: \(3\left(x-\frac{7}{2}\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-\frac{29}{2}=0\)

Trung trực AC vuông góc AC và đi qua N nên có pt:

\(1\left(x-\frac{5}{2}\right)-5\left(y+\frac{3}{2}\right)=0\Leftrightarrow...\)

Trung trực BC vuông góc BC và đi qua P:

\(2\left(x-4\right)+7\left(y+\frac{1}{2}\right)=0\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

2.

Vecto pháp tuyến của $\Delta_1$: \(\overrightarrow{n_1}=(1,2)\)

Vecto pháp tuyến của $\Delta_2$: \(\overrightarrow{n_2}=(1,-1)\)

Cosin góc giữa 2 đường thẳng

\(\cos (\Delta_1,\Delta_2)=\frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}=\frac{|1.1+2(-1)|}{\sqrt{1^2+2^2}.\sqrt{1^2+(-1)^2}}=\frac{\sqrt{10}}{10}\)

Đáp án A

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

1.

Vecto pháp tuyến của $\Delta_1: (10,5)$

$\Rightarrow$ vecto chỉ phương \(\overrightarrow{u_1}=(-5,10)\)

Vecto chỉ phương của $\Delta_2$ \(\overrightarrow{u_2}=(1,-1)\)

Cosin góc giữa 2 đường thẳng:

\(\cos (\overrightarrow{u_1},\overrightarrow{u_2})=\frac{|\overrightarrow{u_1}.\overrightarrow{u_2}|}{|\overrightarrow{u_1}||\overrightarrow{u_2}|}=\frac{|-5.1+10(-1)|}{\sqrt{(-5)^2+10^2}.\sqrt{1^2+(-1)^2}}=\frac{3\sqrt{10}}{10}\)