K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

\(x^{2019}-y^{2019}+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}\right)+2\left(x-y\right)=0\)

<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2\right)=0\)(1)

Có: \(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2>0\)mọi x, y.

(1) <=> \(x-y=0\)

<=> x = y

Thế vào P ta có:

\(P=x^4-2x^2+2=\left(x^2-1\right)^2+1\ge1\)

"=" xảy ra <=> \(y=x=\pm1\)

Vậy min P =1 khi và chỉ khi x = y =1 hoặc x = y =-1.

9 tháng 11 2017

đã hỏi thầy giáo và đã hiêu câu này. Quả thực đáp án A là đúng

Cảm ơn ai đang đã quan tâm đến.

13 tháng 11 2016

Đặt x=log9t (t>0), phương trình đã cho trở thành:

\(2^{3log_9t}+3^{2log_9t}=17\Leftrightarrow8^{log_9t}+t=17\)

Đặt \(f\left(t\right)=8^{log_9t}+t-17\)

ta thấy f(t) là hàm đồng biến trên khoảng \(\left(0;+\infty\right)\) mà f(9)=0

do đó t=9 là nghiệm duy nhất của phương trình f(t)=0

t=9 nên x=1

đáp án:

Hàm số đã cho xác định trên D = R.

Với m = -1. Khi đó hàm số trở thành y = -2x + 4 ; y' = -2 < 0 ∀x∈R, không thỏa mãn yêu cầu bài toán.

Với m ≠ -1. Ta có f'(x)= 3(m+1)x2 - 6(m + 1)x + 2m

   + Hàm số đồng biến trên khoảng có độ dài không nhỏ hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn [x1;x2 ] thỏa mãn |x1 - x2 | ≥ 1

   + f'(x)= 0 có hai nghiệm phân biệt x1,x2 và hàm số đồng biến trong đoạn[x1;x2]

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Theo Viét ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

   + Với |x1 - x2 | ≥ 1 ⇔ (x1 + x2 )2 - 4x1 x2 - 1 ≥ 0

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đối chiếu điều kiện ta có m ≤ -9.

29 tháng 7 2019

Có: \(z^2\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow\)\(-z\le x+y\le z\)

And: \(\frac{z^2}{4}\ge\frac{x^2+y^2}{2}\ge\frac{2xy}{2}=xy\)

=> \(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\ge2\sqrt{\frac{1}{\left(xy\right)^4}}+\frac{1}{z^4}=\frac{2}{\left(xy\right)^2}+\frac{1}{z^4}\ge\frac{2}{\left(\frac{z^2}{4}\right)^2}+\frac{1}{z^4}=\frac{33}{z^4}\)

And: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2\right)^2}{2}+\frac{z^4}{4}+\frac{3z^4}{4}\ge\frac{\left(x^2+y^2+z^2\right)^2}{6}+\frac{3z^4}{4}\)

\(\ge\frac{\left(\frac{\left(x+y\right)^2}{2}+z^2\right)^2}{6}+\frac{3z^4}{4}\ge\frac{\left(\frac{\left(-z\right)^2}{2}+z^2\right)^2}{6}+\frac{3z^4}{4}=\frac{\frac{9z^4}{4}}{6}+\frac{3z^4}{4}=\frac{9z^4}{8}\)

=> \(M=\left(x^4+y^4+z^4\right)\left(\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\right)\ge\frac{33}{z^4}.\frac{9z^4}{8}=\frac{297}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=y\\x+y=-z\\x^2+y^2=\frac{z^2}{2}\end{cases}}\Leftrightarrow x=y=\frac{-z}{2}\)

... 

29 tháng 7 2019

à còn điều kiện \(x,y,z\ne0\) nữa nhé *3* 

17 tháng 12 2016

Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)

Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?

17 tháng 12 2016

đề bài chỉ vậy thôi

28 tháng 8 2016

.

 

14 tháng 12 2016

nếu có đáp án trắc nghiệm thì theo mình làm bài này nhanh như sau:

tìm tập xác định D=R

tính y', tìm điều kiện để cho hàm số có 3 điểm cực trị là pt y'=0 có 3 nghiệm phân biệt

áp dụng công thức tính nhanh :b^2 -6ac, suy ra m , kết hợp với điều kiện hàm số có 3 điểm cực trị, suy ra m cần tìm

lưu ý: công thức mình đưa ra là b^2-6ac chỉ áp dụng cho hàm bậc 4 trùng phương, 3 điểm cực trị là 3 đỉnh của tam giác và có trọng tâm là gốc tọa độ.