K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Tính đc nữa luôn hả

Trả lời

2101 - 1 

= 2.5353012 x 1030

Study well 

31 tháng 3 2017

Ta có:

1 phần 2 mũ 2 tức là 1 phần 2 * 1 phần 2 = 1phần 4

1 phần 2mũ  3 tức là 1 phần 2* 1phần 2 * 1 phần 2 = 1 phần 8

1 phần 2mũ 4 tức là 1 phần 2* 1phần 2 * 1 phần 2  =1phần18

1 phần 2mũ 5 tức là 1 phần 2* 1phần 2 * 1 phần 2 *1 phần 2*1 phần 2  =1phần 36

 Ta thấy mẫu  số cứ gấp lên 2 lần

Mẫu số của phân số cuối là :

2*2*2*...*2 {có 2005 số 2 } = anh tính hộ em thì em thay bằng x

gọi tổng của biểu thức là A

Ta có

A =1 phàn 2 +1phần 4 +1 phần 8 +...+x

A *2=1 + 1phần 2 +1phần 4 +...+ x/2

A*2 -A=1 + 1phần 2 +1phần 4 +...+ x/2 - 1 phàn 2 +1phần 4 +1 phần 8 +...+x

A= 1 - x

A= [x-1] phần x

                            Đ/s x-1 phần x               

31 tháng 3 2017

Mk chỉ bik viết lại đề bài của bn cho mn hiểu thui,thông cảm mk cx lớp 6 nhg k giải đc

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2005}}\) bằng mấy???

18 tháng 12 2021

Cho xin đáp án lẹ đi

22 tháng 12 2021
Lớp 6 lm j đã học cái này :/
4 tháng 4 2017

\(A=\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)

\(A< \frac{1}{99.100}+\frac{1}{100.101}+..+\frac{1}{2012.2013}+\frac{1}{2013.2014}\)

\(A< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2013}-\frac{1}{2014}\)

\(A< \frac{1}{99}-\frac{1}{2014}< \frac{1}{99}\)

Vậy A<1/99

1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199< 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)

1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200

\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/199 > 1/200

1 tháng 7 2019

2B= 22+23+24+...+2100

=>B=2B-B=22+23+24+...+2100-(21+22+23+...+299)=2100-2<2101-1

1 tháng 7 2019

\(B=2^1+2^3+2^5+...+2^{99}\)

\(2^2B=2^2\left(2+2^3+2^5+...+2^{99}\right)\)

\(4B=2^3+2^5+2^7+...+2^{101}\)

\(4B-B=\left(2^3+2^5+2^7+...+2^{101}\right)-\left(2^1+2^3+2^5+..+2^{99}\right)\)

\(3B=2^{101}-2\)

\(B=\frac{2^{101}-2}{3}\) < \(F=2^{101}-2\)

3 tháng 7 2020

Bài làm:

a) \(a=2+2^3+2^5+...+2^{99}+2^{101}\)

\(\Rightarrow4a=2^3+2^5+2^7+...+2^{101}+2^{103}\)

\(\Rightarrow4a-a=\left(2^3+2^5+2^7+...+2^{103}\right)-\left(2+2^3+2^5+...+2^{101}\right)\)

\(\Leftrightarrow3a=2^{103}-2\)

\(\Rightarrow a=\frac{2^{103}-2}{3}\)

Vậy \(a=\frac{2^{103}-2}{3}\)

b) \(b=1-5^3+5^6-5^9+...+5^{96}-5^{99}\)

\(\Rightarrow125b=5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\)

\(\Rightarrow125b+b=\left(5^3-5^6+5^9-5^{12}+...+5^{99}-5^{102}\right)+\left(1-5^3+5^6-5^9+...+5^{96}-5^{99}\right)\)

\(\Leftrightarrow126b=1-5^{102}\)

\(\Rightarrow b=\frac{1-5^{102}}{126}\)

Vậy \(b=\frac{1-5^{102}}{126}\)

Học tốt!!!!