K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

28 tháng 10 2020

\(\text{Từ }\frac{3x-2y}{5}=\frac{5y-3z}{2}=\frac{2z-5x}{3}\)

\(\Rightarrow\frac{15x-10y}{25}=\frac{10y-6z}{4}=\frac{6z-15x}{9}\left(\text{nhân cả tử và mẫu của mỗi phân số với chính mẫu số của phân số đó}\right)\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau: }\)

\(\frac{15x-10y}{25}=\frac{10y-6z}{4}=\frac{6z-15x}{9}=\frac{\left(15x-10y\right)+\left(10y-6z\right)+\left(6z-15x\right)}{25+4+9}=\frac{15x-10y+10y-6z+6z-15x}{38}=\frac{\left(15x-15x\right)-\left(10y-10y\right)-\left(6z-6z\right)}{38}=\frac{0}{38}=0\)

\(\left\{{}\begin{matrix}\frac{15x-10y}{25}=0\\\frac{10y-6z}{4}=0\\\frac{6z-15x}{9}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15x=10y\\10y=6z\\6z=15x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\\\frac{z}{15}=\frac{x}{6}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=\frac{y}{30}\left(1\right)\\\frac{y}{30}=\frac{z}{50}\left(2\right)\\\frac{z}{15}=\frac{x}{6}\end{matrix}\right.\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}\)

\(\Rightarrow\frac{10x}{200}=\frac{3y}{90}=\frac{2z}{100}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)

\(\frac{10x}{200}=\frac{3y}{90}=\frac{2z}{100}=\frac{10x-3y-2z}{200-90-100}=\frac{-4}{10}=\frac{-2}{5}\)

\(\left\{{}\begin{matrix}\frac{x}{20}=\frac{-2}{5}\\\frac{y}{30}=\frac{-2}{5}\\\frac{z}{50}=\frac{-2}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-12\\z=-20\end{matrix}\right.\)

\(\text{Vậy }x=-8,y=-12,z=-20\)

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi