Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{99.101}\right)\)
\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}....\dfrac{10000}{99.101}\)
\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)
\(A=\dfrac{2.3.4...100}{1.2.3....99}.\dfrac{2.3.4....100}{3.4.5....101}\)
\(A=100.\dfrac{2}{101}=\dfrac{200}{101}\)
Vậy A = \(\dfrac{200}{101}\)
Chúc học tốt!!
a, Đề sai hả bạn ??
b, \(\dfrac{\left(1,16-x\right).5,25}{\left(10\dfrac{5}{9}-7\dfrac{1}{4}\right).2\dfrac{2}{17}}=75\%\)
\(\dfrac{\left(1,16-x\right).5,25}{\left(\dfrac{95}{9}-\dfrac{29}{4}\right).\dfrac{36}{17}}=\dfrac{75}{100}\)
\(\dfrac{\left(1,16-x\right).5,25}{\left(\dfrac{380}{36}-\dfrac{261}{36}\right).\dfrac{36}{17}}=\dfrac{3}{4}\)
\(\dfrac{\left(1,16-x\right).5,25}{\dfrac{119}{36}.\dfrac{36}{17}}=\dfrac{3}{4}\)
\(\dfrac{\left(1,16-x\right).5,25}{7}=\dfrac{3}{4}\)
=> \(\left[\left(1,16-x\right).5,25\right].4=3.7\)
\(\left[\left(1,16-x\right).5,25\right].4=21\)
( 1,16 - x ) . 5,25 = 21/4
1,16 - x = 21/4 : 5,25
1,16 - x = 1
x = 1,16 - 1
x = 0,16
Vậy x = 0,16
c, \(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{19.21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{19.21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{21}\right).420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(\dfrac{1}{2}.\dfrac{20}{21}.420-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(200-\left[0,4.\left(7,5-2,5x\right)\right]:0,25=212\)
\(0,4.\left(7,5-2,5x\right):0,25=200-212\)
\(0,4.\left(7,5-2,5x\right):0,25=-12\)
0,4 . ( 7,5 - 2,5x ) = -12 . 0,25
0,4 . ( 7,5 - 2,5x ) = -3
7,5 - 2,5x = -3 :0,4
7,5 - 2,5x = -7,5
2,5x = 7,5-(-7,5)
2,5x = 15
x = 6
Vậy x = 6
Vậy x = 51
câu a chắc mk nhìn ko rõ vì mk cận mà ko đeo kính, ghi sai đề
\(A=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{24}\right).\left(1+\dfrac{1}{3.5}\right).....\left(1+\dfrac{1}{2014.2016}\right)\)
\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4060225}{2014.2016}\)
\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{2015^2}{2014.2016}\)
\(A=\dfrac{2.3.4.5...2015}{1.2.3...2014}.\dfrac{2.3.4...2015}{3.4.5...2016}\)
\(A=2015.\dfrac{2}{2016}=2015.\dfrac{1}{1008}=\dfrac{2015}{1008}\)
Vậy \(A=\dfrac{2015}{1008}\)
Ta có :
\(\dfrac{1}{2}\)(\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+2}\))=\(\dfrac{20}{41}\)
\(\dfrac{1}{2}\)(\(\dfrac{1}{3}\)-\(\dfrac{1}{x+2}\))=\(\dfrac{20}{41}\)
\(\dfrac{1}{3}\)-\(\dfrac{1}{x+2}\)=\(\dfrac{40}{41}\)
\(\dfrac{1}{x+2}\)=\(\dfrac{1}{3}\)-\(\dfrac{40}{41}\)
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)