Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Ta thấy : \(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Do đó : \(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\) ( thỏa mãn )
Vậy : \(\left(x,y,z\right)=\left(1,3,-1\right)\)
2/a/\(\Leftrightarrow9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\).Từ đó suy ra
\(\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
b/\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bzx+cxy=0\)
Ta có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bzx+cxy}{abc}=1\)
\(\RightarrowĐPCM\)
1/Mạn phép sửa đề :\(\left\{{}\begin{matrix}3x^2+y^2+2x-2y-1=0\left(1\right)\\2x\left(x+y\right)=2\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) đc \(x^2-2xy+y^2+2x-2y-1=-2\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
Suy ra x-y=-1.Thế ngược lại vào 2 tìm đc x,y
.Nếu mà bạn giữ nguyên đề như vậy thì
Giải phương trình để tìm x bằng cách tìm a, b, và c
của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai. x=−1−√−3y2+6y+43 Lớp 9 x=−1+√−3y2+6y+43câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)
Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{0}{abc}=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.0=1\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(dpcm\right)\)
Chúc bạn học tốt
1 cái T I C K nha cảm ơn
Bài 1:
a) Từ đkđb:
$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$
$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$
$\Rightarrow a^2x=(b+c)^2x$.
Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$
Do đó:
$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$
$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$
$\Rightarrow 2(a^2x+b^2y+c^2z=0$
$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)
b)
\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)
\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)
Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$
Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)
CMR: $x^2+y^2+z^2=1$
-----------------------------------
Thật vậy:
Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)
Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)
Vậy........
Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow\frac{ayz}{xyz}+\frac{bxz}{xyz}+\frac{cxy}{xyz}=0\)
\(\Leftrightarrow\frac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Lại có : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy}{abc}+\frac{ayz}{abc}+\frac{bxz}{abc}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+ayz+bxz}{abc}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{0}{abc}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+0=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Vậy ..............................
Lạ nhỉ mình trả lời rồi mà
ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử
\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)
Chia hai vế cho (x+y+z khác 0) chú ý => dpcm
quái lại câu 1 đâu
(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không
chia hai vế cho abc/2
2/bc+2/ac+2/ab=2 (*)
đăt: 1/a=x; 1/b=y; 1/c=z
ta có
x+y+z=k (**)
x^2+y^2+z^2=k(***)
lấy (*)+(***),<=>(x+y+z)^2=2+k
=> k^2=2+k
=> k^2-k=2
k^2-k+1/4=1/4+2=9/4
\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)
Mình chưa test lại đâu bạn tự test nhé
Ta có :
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{x}{a}.\frac{y}{b}+2.\frac{x}{a}.\frac{z}{c}+2.\frac{y}{b}.\frac{z}{c}=1\)(1)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
Ta lại có :\(2\frac{x}{a}\frac{y}{b}+2\frac{x}{a}\frac{z}{c}+2\frac{y}{b}\frac{z}{c}=\frac{2\left(cxy+bxy+ayz\right)}{abc}=\frac{2.0}{abc}=0\) (2)
Thay (2) vào (1) ta được :\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+0=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm)
1) \(9x^2+y^2-2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
mà: \(9\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0;2\left(z+1\right)^2\ge0\)
nên \(_{\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)
2) Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\left(\frac{ayz+bxz+cxy}{xyz}\right)=0\Leftrightarrow ayz+bxz+cxy=0\)
Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Rightarrow\left(\frac{x^2}{a^2}\right)+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
mà : \(\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=\frac{2xyabc^2+2yzbca^2+2xzacb^2}{a^2b^2c^2}=\frac{2abc\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=\frac{2abc\cdot0}{a^2b^2c^2}=0\)
Vậy \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
1 ) \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}}\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\)
Để \(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\) thì \(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}}\)
2 ) Ta có : \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{z^2}{c^2}+\frac{2yz}{bc}=1\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\) (đpcm(