Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
tích của 3 tỉ số đã cho là \(\left(\frac{a+b+c}{b+c+d}\right)^3\) ,mặt khác tich đó cũng bằng \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)
**** đi
a) \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}=\frac{35}{35}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{5}\right)^2=1\Rightarrow\frac{x^2}{25}=1\Rightarrow x^2=1.25=25=5^2\\\left(\frac{y}{7}\right)^2=1\Rightarrow\frac{y^2}{49}=1\Rightarrow y^2=1.49=49=7^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}5;-5\\y\in\text{{}7;-7\end{cases}}\)
Vậy ...
d) (Đừng chép vội, đọc dòng cuối đi)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}.\frac{1}{2}=\frac{y}{2}.\frac{1}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(y=4z\Rightarrow\frac{y}{4}=\frac{z}{1}\)Ngoặc "}'' 2 điều lại
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{1}=\frac{x-y+z}{6-4+1}=\frac{2}{3}\)
Không biết phần d bạn có chép sai đề không ? Chứ tính đáp án nó không phù hợp
Tìm x,y,z:
a) Ta có : \(\frac{x}{y}=\frac{5}{7}=\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy các tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5^{ }}\right)^2\)\(=\left(\frac{y}{7}\right)^2\)=\(\frac{x.y}{5.7}\)= \(\frac{35}{35}\)=1
Do đó:
\(\left(\frac{x}{5}\right)^2\)=1 => \(\frac{x}{5}\)=1 hoặc -1 => x = 5 hoặc -5
\(\left(\frac{y}{7^{ }}\right)^2\)=1=> \(\frac{y}{7}\)=1 hoặc -1 => 7 hoặc -7
Vì 35 > 0 với mọi x , y
=> x, y cùng dấu
Vậy ( x,y) thuộc ( 5;7) và (-5; -7)
/Còn lại tự làm tự xem trình độ/