Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
a,\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)
=> \(\dfrac{1}{y}=\dfrac{x}{3}-\dfrac{1}{2}=>\dfrac{1}{y}=\dfrac{2x-3}{6}\)
=> y(2x-3)=6.1=6
=> y và 2x-3 là Ư (6)= {+-1,+-2,+-3,+-6}
2x-3 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 2 | 2,5 | 1/2 | 3 | 0 | 9/2 | -3/2 |
y | -6 | 6 | 3 | -3 | 2 | -2 | 1 |
-1 |
vậy (x;y)= .......................
b,c làm tương tự
chúc bn học tốt
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)
\(\Rightarrow x=8\)
\(\Rightarrow y=6\)
\(\Rightarrow z=18\)
b. c. Xem lại đề.
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
B2:
a, \(25\times(-\dfrac{1}{5})^2+8^3:\left(\dfrac{4}{3}\right)^3\)
= \(25\times\dfrac{1}{25}+512:\dfrac{64}{3}\)
= \(1+24\)
= 25
b, \(27:\left(\dfrac{3}{2}\right)^3-4^2\times\left(-\dfrac{1}{2}\right)^2\)
= \(27:\dfrac{27}{8}-16\times\dfrac{1}{4}\)
= \(8-4\)
= 4
a) \(\dfrac{x}{3}=\dfrac{7}{y}\)⇒ x.y = 7.3
⇒ x.y = 21
⇒ Ta có cùng nhiều kết quả:
x | 1 | 21 | 3 | 7 |
y | 21 | 1 | 7 | 3 |
b)\(\dfrac{x}{2}=\dfrac{y}{5}\) và x+y = 35
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)⇒\(\dfrac{x+y}{2+5}=\dfrac{35}{7}\) = 5
⇒ \(\dfrac{x}{2}=\) 5⇒ x=10
⇒ y= 35 - 10 = 25
Vì x;y là số nguyên nên cũng nhận được giá trị âm bạn nhé ( ở câu a)
Bài 1:
a: =>3x-3-4=0
=>3x=7
hay x=7/3
b: =>2x-2+3x+6=0
=>5x+4=0
hay x=-4/5
c: =>\(4x^2+4x-1=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)
d: \(\Leftrightarrow3x-3+2x-4+6=0\)
=>5x+1=0
hay x=-1/5
a ) \(7x=4y\) hay \(\dfrac{x}{4}=\dfrac{y}{7}\) và \(y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{y-z}{7-4}=\dfrac{24}{3}=8\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=32\\y=56\end{matrix}\right.\)
Vậy ............
b ) \(\dfrac{x}{5}=\dfrac{y}{6},\dfrac{y}{8}=\dfrac{z}{7}\)
hay : \(\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}\) và \(x+y-z=69\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Vậy .......
c.
\(\dfrac{x}{y}=\dfrac{2}{5}=\dfrac{x}{2}=\dfrac{y}{5}\)và x - y = 40
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x-y}{2-5}=\dfrac{40}{-3}\)
\(\dfrac{x}{2}=\dfrac{40}{-3}\Rightarrow x=\dfrac{40.2}{-3}=-\dfrac{80}{3}\)
\(\dfrac{y}{5}=\dfrac{40}{-3}\Rightarrow y=\dfrac{40.5}{-3}=-\dfrac{200}{3}\)
Vậy x = \(-\dfrac{80}{3}\), y = \(-\dfrac{200}{3}\)
Tương tự tiếp nghen