Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)
ta có:
-11/12= -33/36
17/-18= -17/18= -34/36
vì -33/36 > -34/36
=>-11/12 > 17/-18
vậy -11/12 > 17/-18
1.\(\frac{456}{461}va\frac{123}{128}\)
Ta có: \(\frac{456}{461}+\frac{5}{461}=1\)
\(\frac{123}{128}+\frac{5}{128}=1\)
vì \(\frac{5}{461}< \frac{5}{128}\)nên \(\frac{456}{461}>\frac{123}{128}\)
2.\(\frac{53}{57}va\frac{531}{571}\)
Vì \(\frac{53}{57}< 1\)
\(\Rightarrow\frac{53}{57}=\frac{530}{570}< \frac{530+1}{570+1}=\frac{531}{571}\)
\(\Rightarrow\frac{53}{57}< \frac{531}{571}\)
A=3/1.3+3/3.5+3/5.7+............+3/49.51
A=3/1-3/3=3/3-3/5+3/5-3/7+...............+3/49-3/51
A=1-1/3+1/3-1/5+1/5-1/7+.....................+1/39-1/51
A=1-1/51
A=50/51
A\(=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{49.51}\right) \)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\frac{2}{49.51}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
Gợi ý:nhân cái biểu thức bên trái vs 2,xong từ đấy là ra lun nha bn!
Bạn phải giải ra chứ nói thế ai hiểu gì. Bạn giải ra giùm mình đi
A=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)
\(\frac{1}{2}\)A= \(\frac{1}{2}.\left(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\right)\)
\(\frac{1}{2}A\)= \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\)
\(\frac{1}{2}A\)= \(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2020-2018}{2018.2020}\)
\(\frac{1}{2}A\)= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(\frac{1}{2}A\)= \(\frac{1}{2}-\frac{1}{2020}\)
\(\frac{1}{2}A=\frac{1009}{2020}\)
\(A=\frac{1009}{2020}:\frac{1}{2}\)
\(A=\frac{1009}{1010}\)
a) Ta có
A= 4/2*4+4/4*6+....+4/2018*2020
=> A= 2*(2/2*4+2/4*6+...+2*(2018*2020)
=> A= 2*(1/2-1/4+1/4-1/6+...+1/2018-1/2020)
=> A= 2*(1/2-1/2020)
=> A= 2* 1009/2020
=> A= 1009/1010
b) B= 1/18+1/54+1/108+...+1/990
=> B= 3/3*(1/18+1/54+1/108+..+1/990)
=> B= 1/3*( 3/3*6+3/6*9+...+3/30*33)
=> B= 1/3*(1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)
=> B= 1/3*( 1/3-1/33)
=> B=1/3*10/33
=> B=10/99
456 x 128 / 451 x 128 =58368/57728
123 x 451 / 128 x 451 = 55473/57728
so sánh : 58368/57728 ...>.... 55473/ 57728
vậy suy ra : 456/451 ....>.... 123/128
tk mk nha mk nhanh nhất
\(\frac{456}{451}\) > \(\frac{123}{128}\)tích cho mik nhé