K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18\)

\(=\left[\left(2x+2\right)^2-1\right]\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-9\left(x+1\right)^2+8\left(x+1\right)^2-18\)

\(=\left(x+1\right)^2\left[4\left(x+1\right)^2-9\right]+2\left[4\left(x+1\right)^2-9\right]\)

\(=\left[\left(2x+2\right)^2-9\right]\left[\left(x+1\right)^2+2\right]\)

\(=\left(2x+5\right)\left(2x-1\right)\left(x^2+2x+3\right)\)

b: \(\left(x^2+4x+3\right)\left(x^2+12x+35\right)+15\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

c: \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)

\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)

\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)

\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)

8 tháng 12 2019

bn nên vt thành phân thức thì mọi người sẽ dễ nhìn và sẽ giải giúp bn!!!

5 tháng 11 2017

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

17 tháng 12 2016

Câu 1:

 \(x^4+5x^3-12x^2+5x+1=x^4+7x^3+x^2-2x^3-14x^2-x+x^2+7x+1\)

\(=\left(x^4+7x^3+x^2\right)-\left(2x^3+14x^2+x\right)+\left(x^2+7x+1\right)\)

\(=x^2\left(x^2+7x+1\right)-2x\left(x^2+7x+1\right)+\left(x^2+7x+1\right)\)

\(=\left(x^2-2x+1\right)\left(x^2+7x+1\right)\)

\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)

Câu 2:

\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=x^4-24x^3+203x^2-720x+900-24x^2\)

\(=x^4-24x^3+179x^2-720x+900\)

\(=\left(x^4-7x^3+30x^2\right)-\left(17x^3-119x^2+510x\right)+\left(30x^2-210x+900\right)\)

\(=x^2\left(x^2-7x+30\right)-17x\left(x^2-7x+30\right)+30\left(x^2-7x+30\right)\)

\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)

\(=\left(x^2-2x-15x+30\right)\left(x^2-7x+30\right)\)

\(=\left[x\left(x-2\right)-15\left(x-2\right)\right]\left(x^2-7x+30\right)\)

\(=\left(x-15\right)\left(x-2\right)\left(x^2-7x+30\right)\)

Câu 3:

\(2x^3+11x^2+3x-36=\left(2x^3+14x^2+24x\right)-\left(3x^2+21x+36\right)\)

\(=2x\left(x^2+7x+12\right)-3\left(x^2+7x+12\right)\)

\(=\left(2x-3\right)\left(x^2+7x+12\right)\)

\(=\left(2x-3\right)\left(x^2+3x+4x+12\right)\)

\(=\left(2x-3\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)

\(=\left(2x-3\right)\left(x+3\right)\left(x+4\right)\)

20 tháng 2 2018

\(\text{a) }x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow t^2-25=0\\ \Leftrightarrow\left(t+5\right)\left(t-5\right)=0\\ \Leftrightarrow\left(x^2+x-1+5\right)\left(x^2+x-1-5\right)=0\\ \Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-6\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x^2+3x-2x-6\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\left[\left(x^2+3x\right)-\left(2x+6\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\left[x\left(x+3\right)-2\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-2\right)\left(x+3\right)=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{2;-3\right\}\)

\(\text{b) }\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x^2-4x-7x+28\right)\left(x^2-5x-6x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)

Đặt \(x^2-11x+29=t\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1-1680=0\\ \Leftrightarrow t^2-1681=0\\ \Leftrightarrow\left(t+41\right)\left(t-41\right)=0\\ \Leftrightarrow\left(x^2-11x+29+41\right)\left(x^2-11x+29-41\right)=0\\ \Leftrightarrow\left(x^2-11x+70\right)\left(x^2-11x-12\right)=0\\ \Leftrightarrow\left(x^2-11x+\dfrac{121}{4}+\dfrac{159}{4}\right)\left(x^2-12x+x-12\right)=0\\ \Leftrightarrow\left[\left(x^2-11x+\dfrac{121}{4}\right)+\dfrac{159}{4}\right]\left[\left(x^2-12x\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left[\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\right]\left[x\left(x-12\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x-12\right)=0\left(\text{Vì }\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;12\right\}\)

\(\text{c) }\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\\ \Leftrightarrow\left(x^2+2x-5x-10\right)\left(x^2+3x-6x-18\right)=180\\ \Leftrightarrow\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\) Đặt \(x^2-3x-14=t\) \(\Leftrightarrow\left(t+4\right)\left(t-4\right)=180\\ \Leftrightarrow t^2-16-180=0\\ \Leftrightarrow t^2-196=0\\ \Leftrightarrow\left(t+14\right)\left(t-14\right)=0\\ \Leftrightarrow\left(x^2-3x-14+14\right)\left(x^2-3x-14-14\right)=0\\ \Leftrightarrow\left(x^2-3x\right)\left(x^2-3x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2-7x+4x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left[x\left(x-7\right)+4\left(x-7\right)\right]=0\\ \Leftrightarrow x\left(x-3\right)\left(x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+4=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-4\\x=7\end{matrix}\right.\) Vậy tập nghiệm phương trình là \(S=\left\{0;3;-4;7\right\}\)