Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: ΔDEF vuông tại E
=>\(\widehat{EDF}+\widehat{EFD}=90^0\)
=>\(\widehat{EFD}+30^0=90^0\)
=>\(\widehat{EFD}=60^0\)
ΔDEF vuông tại E
=>\(ED^2+EF^2=FD^2\)
=>\(ED^2=10^2-6^2=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔIFE và ΔIDP có
\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)
IF=ID
\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)
Do đó: ΔIFE=ΔIDP
=>IE=IP
Câu 1:
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔMAB và ΔMDC có
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB=ΔMDC
=>MA=MD
A B C M d
(Vẽ hình có thể chưa chuẩn xác!)
a) Có \(\Delta ABC\)vuông tại \(A\)có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2=25-9=16\)
\(\Rightarrow AC=\sqrt{16}=4\left(cm\right)\)
Ta có: \(\widehat{ABC}+\widehat{BCA}=90\)độ ( Cùng phụ \(\widehat{BAC}\))
\(\Rightarrow50+\widehat{BCA}=90\Rightarrow\widehat{BCA}=90-50=40\left(cm\right)\)
b) Xét \(\Delta ABM\)và \(\Delta dCM\)(d nhỏ thì đúng hơn, với đề cho) có:
\(\widehat{BMA}=\widehat{dMC}\)(đối đỉnh)
\(BM=CM\)( vì \(M\)là trung điểm \(BC\))
\(\widehat{ABC}=\widehat{BCd}\)( So le trong, \(AB\)// \(Cd\))
\(\Rightarrow\Delta ABM=\Delta dCM\left(g.c.g\right)\)
\(\Rightarrow AB=dC\)(hai cạnh tương ứng)
Xét tứ giác \(ABCd\)có: \(AB=dC\left(cmt\right)\)và \(AB\)// \(dC\left(gt\right)\)
\(\Rightarrow\)Tứ giác \(ABCd\)là hình bình hành
\(\Rightarrow M\)là trung điểm \(Ad\)(tính chất 2 đường chéo trong hình bình hành)
\(\Rightarrow MA=Md\left(đpcm\right)\)
Ps: Check giùm coi có chỗ nào chưa good nha =))
Theo đề đúng thì lm như sau:
a) Có: DE // BF (gt)
EF // BD (gt)
Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)
b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)
ED // BC (gt) => DEF = EFC (so le trong) (2)
Từ (1) và (2) => ADE = EFC
Xét t/g ADE và t/g EFC có:
EAD = CEF ( đồng vị)
AD = EF ( cùng = BD)
ADE = EFC (cmt)
Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)
c) Xét t/g MFE và t/g MDB có:
MF = MD (gt)
MFE = MDB (so le trong)
FE = DB (câu a)
Do đó, t/g MFE = t/g MDB (c.g.c)
=> EMF = BMD (2 góc tương ứng)
Mà EMF + EMD = 180o
Nên BMD + EMD = 180o
=> BME = 180o
hay B,M,E thẳng hàng (đpcm)
đề bài lỗi nhiều quá