Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 8x2 + 4xy - 2ax - ay = (8x2 + 4xy) - (2ax + ay) = 4x(2x + y) - a(2x + y) = (4x - a)(2x + y)
b) 2xy - x2 - y2 = 16 - (-2xy + x2 + y2) = 42 - (x - y)2 = (4 - x + y)(4 + x - y)
c) x2 - y2 - 2yz - z2 = x2 - (y2 + 2yz + z2) = z2 - (y + z)2 = (z - y - z)(z + y + z)
\(a,2x^2-2xt-5x+5y\)
\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)
\(=x\left(2x-5\right)-y\left(2x-5\right)\)
\(=\left(2x-5\right)\left(x-y\right)\)
\(b,8x^2+4xy-2ax-ay\)
\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)
\(=2x\left(4x-a\right)+y\left(4x-a\right)\)
\(=\left(4x-a\right)\left(2x+y\right)\)
\(c,x^3-4x^2+4x\)
\(=x^3-2x^2-2x^2+4x\)
\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)
\(=x^2\left(x-2\right)-2x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)
\(=x\left(x-2\right)^2\)
\(d,2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
\(e,x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)
a) Biểu thức không phân tích được thành nhân tử. Bạn xem có nhầm dấu không.
b)
\(8x^2+4xy-2ax-ay=(8x^2+4xy)-(2ax+ay)\)
\(=4x(2x+y)-a(2x+y)=(4x-a)(2x+y)\)
c) Biểu thức không phân tích được thành nhân tử.
d)
\(3a^2-6ab+3b^2-12c^2\)
\(=(3a^2-6ab+3b^2)-12c^2=3(a^2-2ab+b^2)-12c^2\)
\(=3(a-b)^2-3.(2c)^2=3[(a-b)^2-(2c)^2]=3(a-b-2c)(a-b+2c)\)
e) Biểu thức không phân tích được thành nhân tử.
f) Sửa:
\(x^2+y^2+2xy-m^2+2mn-n^2\)
\(=(x^2+2xy+y^2)-(m^2-2mn+n^2)\)
\(=(x+y)^2-(m-n)^2=(x+y-m+n)(x+y+m-n)\)
g) Biểu thức không phân tích được thành nhân tử. Nếu muốn phải thay $x^2$ thành $4x^2$ hoặc $y^2$ thành $4y^2$
h)
\(x^2-xy-3x+3y=(x^2-xy)-(3x-3y)=x(x-y)-3(x-y)=(x-3)(x-y)\)
k)
\(x^4-4x^3+8x^2+8x=x(x^3-4x^2+8x+8)\)
l)
\(16x^3y+\frac{1}{4}yz^3=\frac{1}{4}y(64x^3+z^3)=\frac{1}{4}y[(4x)^3+z^3]\)
\(=\frac{1}{4}y(4x+z)(16x^2-4xz+z^2)\)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
c) 2x^3y - 2xy^3 - 4xy^2 - 2xy
= 2xy ( x^2 - y^2 - 2y - 1 )
= 2xy ( x^2 - ( y^2 + 2y + 1 )
= 2xy ( x^2 - ( y + 1 )^2 )
= 2x ( x - y - 1 )( x + y + 1 )
sai bạn ơi !
đáp án là
= 2xy (x + y + 1) (x - y + 1)
that pun cho ban Nguyen Dieu Thao :((
a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )
Bài 1 :
a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
b) \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)
c) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
d) \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)
BÀi 2 :
a) \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)
\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)
b) \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)
c) \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)
\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)
\(=\left(b+c-a\right)\left(d-c^2\right)\)
BÀi 3 :
a) \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)
b) \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)
c) \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)
d) \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\) \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)
a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)
b) sửa đề nhé!
\(6x-9-x^2=-\left(x^2-6x+9\right)\)
\(=-\left(x-3\right)^2\)
a) \(2x^2-2xy-5x+5y\)
\(=y\left(5-2x\right)-x\left(5-2x\right)\)
\(=\left(5-2x\right)\left(y-x\right).\)
b) \(8x^2+4xy-2ax-ay\)
\(=2x\left(4x-a\right)+y\left(4x-a\right)\)
\(=\left(2x+y\right)\left(4x-a\right)\)
c) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
d) \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-4^2\right)\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
e) \(x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
g) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)