Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
n+8 chia hết cho n+2
=> (n+2) - 10 chia hết cho n+2
=> n+2 chia hết cho n+2
=> 10 chia hết cho n+2
=> n+2 thuộc Ư(10) = { 1,2,5,10,-1,-2,-5,-10}
Ta xét
Với n+2 = 1 thì n=-1
Với n+2 = 2 thì n=0
Với n+1 = 5 thì n=4
Với n+2 = 10 thì n=8
Với n+2 = -1 thì n=-3
Với n+2 = -2 thì n=-4
Với n+2 = -5 thì n=-7
Với n+2 = -10 thì n=-12
a) ta có: n+5 chia hết cho n
mà n chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5)= (5;-5;1;-1)
KL: n = ( 5;-5;1;-1)
b) ta có: n+8 chia hết cho n+2
=> n + 2 + 6 chia hết cho n+2
mà n+2 chia hết cho n+2
=> 6 chia hết cho n+2
=> n+2 thuộc Ư(6)=(6;-6;3;-3;2;-2;1;-1)
nếu n+2 = 6 => n = 4
n+2 = - 6 => n = - 8
n+ 2 = 3 => n = 1
n+2 = - 3 => n = - 5
n + 2 = 2=> n = 0
n+ 2= -2 => n= - 4
n+2 = 1 => n = -1
n + 2 = -1 => n = - 3
KL: n = ( 4;-8;1;-5, 0;-4;-1;-3)
các phần còn lại, bn lm tương tự nha!
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
\(n+5⋮n-2\)
\(n-2+7⋮n-2\)
\(7⋮n-2\)hay \(n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(6n+9⋮3n+2\)
\(2\left(3n+2\right)+5⋮3n+2\)
\(5⋮3n+2\)hay \(3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)