\(\frac{1}{1\cdot3}\))(1+\(\frac{1}{2\cdot4}\))(1+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

P=\(\frac{4}{1.3}\) . \(\frac{9}{2.4}\) .....\(\frac{10000}{99.101}\)

  =(\(\frac{2.2}{1.3}\)) (\(\frac{3.3}{2.4}\)).... (\(\frac{100.100}{99.101}\))

  = \(\frac{\left(2.3....100\right)\left(2.3....100\right)}{\left(1.2....99\right)\left(3.4....101\right)}\)

  =\(\frac{100.2}{101}\)

  =\(\frac{200}{101}\)

Vậy P = \(\frac{200}{101}\)

3 tháng 5 2018

Sai đề rồi bạn. Phải là thế này chứ:

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

3 tháng 5 2018

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{100}=\frac{1}{6}+\frac{1}{2}-\frac{1}{100}=\frac{197}{300}\)

5 tháng 7 2016

c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)

\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=3\left(1-\frac{1}{101}\right)\)

\(=\frac{300}{101}\)

5 tháng 7 2016

a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=4\left(1-\frac{1}{100}\right)\)

\(=\frac{99}{25}\)

13 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{10}\)

\(1-\frac{1}{10}\)

\(\frac{9}{10}\)

Bạn học tốt nhea ♥

13 tháng 5 2018

dễ thế mà, ko biết làm

Dạng toán lớp 4 đấy má

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

Lời giải:

$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2014-2012}{2012.2013.2014}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{2012.2013}-\frac{1}{2013.2014}$

$=\frac{1}{1.2}-\frac{1}{2013.2014}< \frac{1}{2}$

$\Rightarrow A< \frac{1}{2}:2$

Hay $A< \frac{1}{4}$

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\\ =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+.........+\left(\frac{1}{99}-\frac{1}{100}\right)\\ =\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+......+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\\ =\frac{49}{100}\)

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{99}.\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

28 tháng 4 2017

2/1*2*3+2/3*4*5+...+2/2009*2010*2011

A=2/2*(1/1-1/2-1/3+1/2-1/3-1/4+1/4-1/5-1/6+...+1/2009-1/2010-1/2011

A=1*(1-1/2011)

A=1*2010/2011=2010/2011

suy ra: 2010/2011<1 

suy ra 1/2 của 1 lớn hơn 2010/2011

VẬY A NHỎ HƠN 1/2

VẬY 

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

13 tháng 7 2020

7h30p r nha bạn :))

13 tháng 7 2020

ngày 14/7