K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

   Gọi số đó là a, Thương của số đó chia cho 3 là q ta có:

a = q*3+1

=> a3= ( 3q+1)3 = 27q3+27q+9q+1 = 3*( 9q+ 9q2+3q)+1 ( có dạng như q*3+1 đấy a) 

=> vậy lập phương của số đó cũng chia 3 dư một

12 tháng 7 2018

1 . Gọi số đó là a ( a là số tự nhiên )

Theo bài ra ta có :

a = 3k + 1 .

=> a2 = ( 3k + 1 )2 

=> a2 = ( 3k + 1 ) . ( 3k + 1 )

=> a= 9k2 + 3k + 3k + 1 .

=> a2 = 9k2 + 6k + 1 .

=> a2 = 3 . ( 3k2 + 2k ) + 1 .

Do đó một số tự nhiên chia cho 3 dư 1 thì bình phương của nó cũng chia cho 3 dư 1 .

Vậy bài toán được chứng minh

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

14 tháng 12 2015

@Lan Anh Nguyễn Chỉ chi tiết đi bạn -_-

11 tháng 1 2020

1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)

\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)

\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)

\(=2\left(c-1\right)\left(c-2\right)+5\le5\) 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.

2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)

3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!

11 tháng 1 2020

Mình xin lỗi vì viết sai nhé, phải là:

1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR: 

8 tháng 7 2019

3. Dễ dàng phân tích được hiệu các bình phương 2 số lẻ bất kỳ bằng :

\(\left(2n+3\right)^2-\left(2n+1\right)^2=\left[\left(2n+3\right)-\left(2n+1\right)\right].\left[\left(2n+3\right)+\left(2n+1\right)\right]\)

\(=2.\left(4n+4\right)=8n+8=8\left(n+1\right)⋮8\left(đpcm\right).\)

https://olm.vn/hoi-dap/detail/92036248714.html

Xem ở link này ( mình gửi cho)

Học tốt!!!!!!!

30 tháng 10 2019

Ta có:

\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)

\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)

Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)

Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)

Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)