Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
3. Dễ dàng phân tích được hiệu các bình phương 2 số lẻ bất kỳ bằng :
\(\left(2n+3\right)^2-\left(2n+1\right)^2=\left[\left(2n+3\right)-\left(2n+1\right)\right].\left[\left(2n+3\right)+\left(2n+1\right)\right]\)
\(=2.\left(4n+4\right)=8n+8=8\left(n+1\right)⋮8\left(đpcm\right).\)
https://olm.vn/hoi-dap/detail/92036248714.html
Xem ở link này ( mình gửi cho)
Học tốt!!!!!!!
Ta có:
\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)
\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)
Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)
Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)
Gọi số đó là a, Thương của số đó chia cho 3 là q ta có:
a = q*3+1
=> a3= ( 3q+1)3 = 27q3+27q2 +9q+1 = 3*( 9q3 + 9q2+3q)+1 ( có dạng như q*3+1 đấy a)
=> vậy lập phương của số đó cũng chia 3 dư một
1 . Gọi số đó là a ( a là số tự nhiên )
Theo bài ra ta có :
a = 3k + 1 .
=> a2 = ( 3k + 1 )2
=> a2 = ( 3k + 1 ) . ( 3k + 1 )
=> a2 = 9k2 + 3k + 3k + 1 .
=> a2 = 9k2 + 6k + 1 .
=> a2 = 3 . ( 3k2 + 2k ) + 1 .
Do đó một số tự nhiên chia cho 3 dư 1 thì bình phương của nó cũng chia cho 3 dư 1 .
Vậy bài toán được chứng minh