Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
A B H C
Ta có \(\frac{HB}{HC}=\frac{1}{3}\Rightarrow HC=3HB\)
Xét \(\Delta AHB\)có \(AH^2=AB^2-HB^2\Rightarrow144=AB^2-HB^2\left(1\right)\)
Xét \(\Delta AHC\)có \(AH^2=AC^2-HC^2\Rightarrow144=AC^2-HC^2=AC^2-9HB^2\left(2\right)\)
Cộng (1) và (2) ta có \(AB^2-HB^2+AC^2-9HB^2=288\Rightarrow\left(AB^2+AC^2\right)-10HB^2=288\)
\(\Rightarrow BC^2-10HB^2=288\Rightarrow\left(HB+3HB\right)^2-10HB^2=288\Rightarrow HB^2=48\Rightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Rightarrow HC=3HB=12\sqrt{3}\left(cm\right)\Rightarrow BC=16\sqrt{3}\left(cm\right)\)
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=HB.BC=4\sqrt{3}.16\sqrt{3}=192\Rightarrow AB=8\sqrt{3}\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{576}=24\left(cm\right)\)
Vậy \(BC=16\sqrt{3}cm;AC=24cm;AB=8\sqrt{3}cm\)
Ta có: góc BAH + HAC = 900
góc ACH + HAC = 900
=> góc BAH = góc ACH
Xét tam giác AHB và tam giác CAB ta có:
góc AHB = góc CAB (=900)
góc BAH = góc BCA (chứng minh trên)
=> tam giác AHB đồng dạng với tam giác CAB (gg) (1)
\(\Rightarrow\frac{AH}{AC}=\frac{HB}{AB}\Rightarrow HB=\frac{AH.AB}{AC}=AH.\frac{AB}{AC}=30.\frac{5}{6}=25cm\)
\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{30^2}{25}=36cm\)
Vậy BH = 25cm. CH = 36cm
ta có thể đơn giản xét tam giác BAH ~ tam giác ACH
=>AH/CH= BH/AH= AB/AC
=> 30/CH= BH/30= 5/6
=> CH= 30.6:5= 36
=> BH= 5.30:6= 25
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)