K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Theo dãy tỉ số (=) ta có :

        \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+ b = 2c ; b+c = 2a ; a+ c = 2b

P  =\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}+\frac{a+c}{c}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=\frac{8abc}{abc}=8\)

17 tháng 7 2015

bấm vào đây hoặc cái này

Ta có: 1/c = 1/2(1/a+1/b) <=> 1/c:1/2 = 1/a+1/b

<=> 1/c.2/1 = (a+b)/ab

<=> 2/c = (a+b)/ab

<=> 2ab = ac + bc (1).

Lại có: a/b=a-c/c-b <=> a(c-b) = b(a-c)

<=> ac – ab = ab – bc

<=> 2ab = ac + bc (2).

Từ (1) và (2) => a/b=a-c/c-b (đpcm)

a: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}>=2\cdot\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\)

\(\Leftrightarrow\left(a+b\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}\cdot2\cdot\sqrt{\dfrac{1}{ab}}=4\)

b: \(a+b+c>=3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>=3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Do đó: \(\left(a+b+c\right)\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

1 tháng 3 2017

a) Theo bài ra:

c = 1 (1)

a - b = 100 ~> a= 1000+b (2)

Thay (1) và (2) vào A, ta có:

A = 1000+b(b+1) - b(1000+b+1) + 1(1000+b-b)

A = (1000 + b).b + 1000+b - 1000b - \(b^2\) -b + 1000

A= 1000b + \(b^2\) + 1000+b - 1000b - \(b^2 \) - b + 1000

A = (1000b - 1000b) + (\(b^2 - b^2 \))+ (1000 + b - b +1000)

A = 0 + 0 + 0

A = 0

Vậy A = 0

29 tháng 7 2017

Trần Thọ Đạt ông giải dùm đi!Bn ý k bk tag nên tui tag dùm!

29 tháng 7 2017

Trần Thọ Đạt, giải giúp mình

27 tháng 12 2018

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\)

\(\Leftrightarrow ab-bc=ac-ab\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Bài này mình cũng đã trả lời rồi đấy ạ =))

2 tháng 2 2017

theo bài ra ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

=> 2ab = c(a + b)

=> ab + ab = ca + cb

=> ab - cb = ca - ab

=> b( a - c ) = a( c - b )

=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

20 tháng 3 2020

$\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}$

Cộng 2 vào mỗi đẳng thức ta có:\(\begin{align} & 2+\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2 \\ & \Leftrightarrow \dfrac{a+b+c+d}{d}=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}\Rightarrow a=b=c=d \\ \end{align}\)

Thay vào P ta được: $P=\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)={{3}^{4}}=81$

17 tháng 1 2019

Bài 1a):

Ta có:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)

Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0

\(\Rightarrow\) a2 + b2 \(\ge\) 2ab

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)

Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

17 tháng 1 2019

Bài 2a):

Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

Vậy ta có đpcm