Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^6-1}{a^2-1}=\frac{\left(a^2\right)^3-1}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a^2-1\right)\left[\left(a^2\right)^2+a^2\cdot1+1^1\right]}{\left(a-1\right)\left(a+1\right)}\)
\(M=\frac{\left(a-1\right)\left(a+1\right)\left(a^4+a^2+1\right)}{\left(a-1\right)\left(a+1\right)}=a^4+a^2+1\)
a) \(\left(3x-1\right)^2-3x\left(x-5\right)=21\)
\(\Leftrightarrow9x^2-6x+1-3x^2+15x=21\)
\(\Leftrightarrow6x^2+9x-20=0\)
\(\Leftrightarrow x\in\left\{-\sqrt{\frac{\sqrt{561}+9}{12}};\sqrt{\frac{\sqrt{561}-9}{12}}\right\}\)
b) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-2\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+76=36\)
\(\Leftrightarrow8x=-40\)
\(\Leftrightarrow x=-5\)
Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=a+b\) (nếu a,b là hai số liên tiếp)
\(\Rightarrow B=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(2^2-1^2\right)\)
\(B=20+19+18+...+1=\frac{20.21}{2}=210\)
https://www.facebook.com/boy.capricorn.official
mình là hsg toán 8, kb vs face mình đi
-->(x+2)(x+5)(x+3)(x+4)=24-->(x^2+7x+10)(x^2+7x+12)=24
đặt a=x^2+7x+11
-->a^2-1=24-->.....
(2x-5)2+2(2x-5)(3x+1)+(3x+1)2
=(2x-5)[(2x-5)+2(3x+1)]+(3x+1)2
=(2x-5)[8x-3]+(3x+1)2
=16x2-46x+15+9x2+6x+1
=25x2-40x+16
=(5x)2-2*5x*4+42
=(5x-4)2
phần nâng cao chính là một hằng đẳng thức hoàn chỉnh (a+b)2. trong đó 2x-5 là a và 3x+1 là b
\(118^2-118.36+18^2\)
\(=118^2-2.118.18+18^2\)
\(=\left(118-18\right)^2\)
\(=100^2=10000\)
\(118^2-118.36+18^2\)
=\(118^2-2.118.18+18^2\)
=\(\left(118-18\right)^2\)
=\(100^2\)
d, \(x^8+x^7+1\)
\(=x^8-x^2+x^7-x+x^2+x+1\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+x^2+x+1\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1\)
\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^4+x\right)\left(x^3-1\right)+x^2+x+1\)
\(=\left(x^3-1\right)\left(x^5+x^4+x^2+x\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x-1\right)\left(x^5+x^4+x^2+x\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
c, \(x^4+5x^3-12x^2+5x+1\)
\(=x^4-x^3+6x^3-6x^2-6x^2+6x-x+1\)
\(=x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left[x^3+6x^2-6x-1\right]\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+6x\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x-1\right)\left(x^2+7x+1\right)\)
\(=\left(x-1\right)^2.\left(x^2+7x+1\right)\)
a, \(\left(x^2+x-2\right)\left(x^2+9x+18\right)-28\)
\(=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-28\)
\(=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]-28\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-28\)
\(=\left(x^2+5x\right)^2-36-28\)
\(=\left(x^2+5x\right)^2-64\)
\(=\left(x^2+5x-8\right)\left(x^2+5x+8\right)\)
b, \(B=\left(x+1\right)^2\left(2x+3\right)-18\)
\(=\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18\)
Đặt \(x^2+2x+1=t\Rightarrow4x^2+8x+3=4t-1\)
Ta có: \(B=\left(4t-1\right)t-18\)
\(=4t^2-t-18\)
\(=4t^2-9t+8t-18\)
\(=t\left(4t-9\right)+2\left(4t-9\right)\)
\(=\left(4t-9\right)\left(t+2\right)\)
\(=\left(4x^2+8x-5\right)\left(x^2+2x+3\right)\) (vì \(t=x^2+2x+1\)
\(=\left(2x-1\right)\left(2x+5\right)\left(x^2+2x+3\right)\)
Chúc bạn học tốt.
\(=\text{1620}\)
\(18^2+36^2=324+1296=1620\)
Oh mammamia, hỏi bài trong giờ thi =)
@Nghệ Mạt
#cua