Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1.2^2+2.3^2+...+98.99^2\)
\(=1.2.\left(3-1\right)+2.3.\left(4-1\right)+...+98.99.\left(100-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+...+98.99.100-98.99\)
\(=\left(1.2.3+2.3.4+...+98.99.100\right)-\left(1.2+2.3+...+98.99\right)\)
\(=\dfrac{98.99.100.101}{4}+\dfrac{98.99.100}{3}\)
\(=24497550+323400\)
\(=24820950\)
* Khai triển 1.2^2 = 1.2.2 = 1.2.(3 - 1) = 1.2.3 - 1.2 2.3^2 = 2.3.3 = 2.3.(4 - 1) = 2.3.4 - 2.3 3.4^2 = 3.4.4 = 3.4(5 - 1) = 3.4.5 - 3.4 ..................................................... 98.99^2 = 98.99.99 = 98.99.100 - 98.99 Vậy E = 1.2.3+2.3.4 + 3.4.5 + ... + 98.99.100 - (1.2 + 2.3 + 3.4 + ..+ 98.99) = X - Y Ta có X = 1.2.3+2.3.4 + 3.4.5 + ... + 98.99.100 X.4 = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) +....+98.99.100.(101-97) = 98.99.100.101 => X = 98.99.100.101/4 = .... Y = 1.2 + 2.3 + 3.4 + ..+ 98.99 Y.3 = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + .. + 98.99.(100-97) = 98.99.100 => Y = 98.99.100/3 = ... Vậy E = X - Y = .... - .... = 24174150
* Khai triển 1.2^2 = 1.2.2 = 1.2.(3 - 1) = 1.2.3 - 1.2 2.3^2 = 2.3.3 = 2.3.(4 - 1) = 2.3.4 - 2.3 3.4^2 = 3.4.4 = 3.4(5 - 1) = 3.4.5 - 3.4 ..................................................... 98.99^2 = 98.99.99 = 98.99.100 - 98.99 Vậy E = 1.2.3+2.3.4 + 3.4.5 + ... + 98.99.100 - (1.2 + 2.3 + 3.4 + ..+ 98.99) = X - Y Ta có X = 1.2.3+2.3.4 + 3.4.5 + ... + 98.99.100 X.4 = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) +....+98.99.100.(101-97) = 98.99.100.101 => X = 98.99.100.101/4 = .... Y = 1.2 + 2.3 + 3.4 + ..+ 98.99 Y.3 = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + .. + 98.99.(100-97) = 98.99.100 => Y = 98.99.100/3 = ... Vậy E = X - Y = .... - .... = 24174150
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
\(linh_1=1^2-2^2+3^2-4^2+...+99^2-100^2\)
\(linh_1=\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\)
\(linh_1=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(99-100\right)\left(99+100\right)\)\(linh_1=-1.3+-1.7+.....+-1.199\)
\(linh_1=\left(-3\right)+\left(-7\right)+....+\left(-199\right)\)
Đến đây dễ r
\(linh_2=1.2^2+2.3^2+3.4^2+...+98.99^2\)
\(linh_2=1.2.2+2.3.3+3.4.4+.....+98.99.99\)
\(linh_2=1.2.\left(3-1\right)+2.3.\left(4-1\right)+3.4.\left(5-1\right)+....+98.99.\left(100-1\right)\)\(linh_2=1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+....+98.99.100-98.99\)\(linh_2=\left(1.2.3+2.3.4+3.4.5+....+98.99.100\right)-\left(1.2+2.3+3.4+....+98.99\right)\)\(linh_3=1.2.3+2.3.4+3.4.5+....+98.99.100\)
\(4linh_3=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+98.99.100.\left(101-97\right)\)
\(4linh_3=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+98.99.100.101-97.98.99.100\)
\(4linh_3=98.99.100.101\)
\(linh_3=\dfrac{98.99.100.101}{4}=24497550\)
\(linh_4=\)\(1.2+2.3+3.4+.....+98.99\)
\(3linh_4=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3linh_4=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3linh_4=98.99.100\)
\(linh_4=\dfrac{98.99.100}{3}=125400\)
Lấy \(linh_3-linh_4\) là ok
b, B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3B = 99.100.101
B = 99.100.101 : 3
B = 333300
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+...+\frac{\left(n+1\right)^2-n^2}{\left[n\left(n+1\right)\right]^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^1}\)
\(=1-\frac{1}{n^2+2n+1}\)
\(=\frac{n^2+2n}{n^2+2n+1}\)
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(=1-\frac{1}{\left(n-1\right)^2}\)
\(=\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\)