Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (-2) . ( x+7 ) + (-5) = 7
<=>(-2).(x+7)=7+5
<=>x+7=12:(-2)
<=>x+7=-6
<=>x=(-6)-7
<=>x=-13
Vậy x=-13
b)(x+4) : (-7) = 14
<=>x+4=14 x (-7)
<=>x+4=-98
<=>x=-98-4
<=>x=-102
Vậy x= -102
c) 72 : ( x+5) - 4 = -12
<=>72:(x+5)=(-12)+4
<=>x+5=72:(-8)
<=>x+5=-9
<=>x=-9-5
<=>x=-14
Vậy x= -14
d) (x+3) : (-6 ) + 12 = 8
<=>(x+3) :(-6)=8-12
<=>x+3=(-4)x(-6)
<=>x+3=24
<=>x=24-3
<=>x=21
Vậy x= 21
a ) 6x : 2 = 16
\(6x=16:2\)
\(6x=8\)
\(x=\frac{8}{6}=\frac{4}{3}\)
b) \(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(x+1=4\)
\(x=3.\)
HT
b)\(\left(x-8\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-8=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}\)
c) \(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=9x+200\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+10\right)=9x+200\) (10 số hạng x)
\(\Leftrightarrow10x+55=9x+200\Leftrightarrow x+55=200\)
\(\Leftrightarrow x=145\)
3x + 3x+1 + 3x+2 = 1053
3x( 1 + 3 + 9 ) = 1053
3x . 13 = 1053
3x = 81
3x = 34
=> x = 4
3 . ( 2x - 1 ) - 2 = 13
3 . ( 2x - 1 ) = 12 + 3
3 . ( 2x - 1 ) = 15
2x - 1 = 15 : 3
2x - 1 = 5
2x = 5 + 1 = 6
x = 6 : 2 = 3
Vậy x = 3
\(3\left(2x-1\right)-2=13\)
\(3\left(2x-1\right)=15\)
\(2x-1=5\)
\(2x=6\)
\(x=3\)
Ta nhận thấy vế trái có 100 số hạng
=> \(\left(x+x+...+x\right)+\left(1+2+...+100\right)=5500\)
<=> \(100x+\frac{100.101}{2}=5500\)
<=> \(100x+5050=5500\)
<=> \(x=4,5\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5550\)
\(< =>x+1+x+2+x+3+...+x+100=5550\)
\(< =>100x+\frac{100\left(100+1\right)}{2}=5550\)
\(< =>100x+\frac{10100}{2}=5550\)
\(< =>100x+5050=5550\)
\(< =>100x=500< =>x=\frac{500}{100}=5\)
a, \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=1-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2019}{2019}-\frac{2018}{2019}=\frac{1}{2019}\)
Đến đây bn tự tính nhé !!
\(\dfrac{1}{2}\left(x-2\right)+\dfrac{1}{3}\left(2-x\right)=x\\ \Leftrightarrow\dfrac{1}{2}\left(x-2\right)-\dfrac{1}{3}\left(x-2\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{3-2}{6}\right)=x\\ \Leftrightarrow\left(x-2\right).\dfrac{1}{6}=x\\ \Leftrightarrow\dfrac{1}{6}x-\dfrac{1}{3}-x=0\\ \Leftrightarrow\left(\dfrac{1}{6}-1\right)x=\dfrac{1}{3}\\ \Leftrightarrow\left(\dfrac{1-6}{6}\right)x=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{-5}{6}x=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{1}{3}:\left(-\dfrac{5}{6}\right)\\ \Leftrightarrow x=-\dfrac{2}{5}\)
Vậy \(x=-\dfrac{2}{5}\)
x= \(\dfrac{7\pm\sqrt{37}}{3}\) nha