Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6F=1.3(5-1)+3.5(7-1)+5.7(9-3)+...99.101(103-97)
6F=1.3+1.3.5-1.3.5+3.5.7-3.5.7+.....-97.99.101+99.101.103
6F=3+99.101.103
6F=3+1029897
6F=1029900
F =1029900:6
F=171650
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(\frac{1}{1.3}+\frac{1}{3,5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
-.-
Đặt A=1/1*3+1/3*5+..+1/99*101
A=2/2*(1/1*3+1/3*5+...+1/99*101)
A=1/2*(2/1*3+2/3*5+..+2/99*101)
A=1/2*(1/1-1/3+1/3-1/5+...+1/99-1/100)
A=1/2*(1/1-1/100)
A=1/2*99/100
A=99/200
50/101 nha
Ai chưa có người yêu thì k và kết bạn với mình nhé
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101
= 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101)
= 1/2.(1 - 1/101)
= 1/2.100/101
= 50/101
\(\text{Đặt : }A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=1-\frac{1}{101}\)
\(\Rightarrow A=\frac{100}{101}:2=\frac{50}{101}\)
B : 7/2 =2/1.3+2/3.5+...+2/99.101
B:7/2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
B:7/2=1-1/101=100/101
B=100/101*7/2=700/202=350/101
B=7/2(2/1.3+2/3.5+ ...+2/99.101)
B=7/2(1-1/3+1/3-1/5+...+1/99-1/101)
B=7/2(1-1/101)=7/2.100/101=350/101
k nha bạn
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-...-\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
b) \(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(=7.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\right)\)
\(=7.\frac{1}{7}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{7}\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)
\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}\)
\(=\frac{50}{101}\)