K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2024

loading...

DS
19 tháng 6 2024

chắc bạn muốn tìm x nhỉ?
loading... 

13 tháng 10 2019

\(do:x=9\Rightarrow x+1=10\Rightarrow A=x^{16}-\left(x+1\right)x^{15}+\left(x+1\right)x^{14}-....+\left(x+1\right)=x^{16}-x^{16}-x^{15}+x^{15}+x^{14}-x^{14}-x^{13}+x^{13}+.....-x+x+1=1\)

\(-x^2+3x-4=-x^2+3x-2,25-1,75=-\left(x-\frac{3}{2}\right)^2-1,75< 0\left(đpcm\right)\)

25 tháng 2 2018

\(x^4+2x^3+8x^2+10x+15=0\)

\(\Leftrightarrow\left(x^4+5x^2\right)+\left(2x^3+10x\right)+\left(3x^2+15\right)=0\)

\(\Leftrightarrow x^2\left(x^2+5\right)+2x\left(x^2+5\right)+3\left(x^2+5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x+3\right)=0\)

mà ta có: \(x^2+5\ge5>0;x^2+2x+3=\left(x+1\right)^2+1\ge1>0\)

nên suy ra phương trình vô nghiệm.

28 tháng 2 2017

\(x^4+2x^3+8x^2+10x+15=\left(x^4+2x^3+x^2\right)+\left(7x^2+10x+15\right)\)

\(\Leftrightarrow\left(x^2+x\right)^2+2.4.\left(x^2+x\right)+16=x^2-2x+1\\ \)

\(\left(x^2+x+4\right)^2=\left(x-1\right)^2\)

\(\left[\begin{matrix}x^2+x+4=x-1\left(1\right)\\x^2+x+4=1-x\left(2\right)\end{matrix}\right.\)

\(\left[\begin{matrix}\left(1\right)\Leftrightarrow x^2=-5\\\left(x+1\right)^2=-3\end{matrix}\right.\)Vo. No

28 tháng 2 2017

(x^4+2x^3+3x^2)+(5x^2+10x+15)=0

x^2(x^2+2x+3)+5(x^2+2x+3)=0

(x^2+2x+3)(x^2+5)=0

x^2+2x+3=0 hoặc x^2+5=0

Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.

x^2+5>0 suy ra pt vô nghiệm.

Vậy pt đã cho vô nghiệm.

Nhớ chọn đúng nha chó yến như :p :p :p

12 tháng 10 2017

Bài 3:

1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy.......................

2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

Vậy........................

3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy............................

4, 5 tương tự nhé bn!

12 tháng 10 2017

bài 3

1 (x-1)(x+2)+5x-5=0

=>(x-1)(x+2)+(5x-5)=o

=>(x-1)(x+2)+5(x-1)=0

=>(x-1)(x+2+5)=0

=>(x-1)(x+7)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

vậy x=1 hoặc x=-7

2. (3x+5)(x-3)-6x-10=0

=>(3x+5)(x-3)-(6x+10)=0

=>(3x+5)(x-3)-2(3x+5)=0

=>(3x+5)(x-3-2)=0

=>(3x+5)(x-5)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

28 tháng 8 2020

3x+18y=3(x+6y)

10 tháng 5 2021

b, \(15\left(x+3\right)+20x\left(x+8\right)=15x+45+20x^2+160x\)

\(=20x^2+175x+45=...\)

c, \(6\left(x-9\right)-3x\left(y-x\right)=6x-54-3xy+3x^2\)

d, \(2xy+10x^2-x\) không phân tích được nữa nhé

e, \(4ab^2-28a+16b\)không phân tích được nữa nhé

g, \(a\left(a+b\right)=ab\left(a+b\right)< =>\left(a+b\right)\left(a-ab\right)=0< =>\left(a+b\right)a\left(1-b\right)=0\)

h, \(30a^2+6a-6=\left(\sqrt{30}a\right)^2+2.\sqrt{30}.\frac{3}{\sqrt{30}}+\frac{3}{10}-\frac{63}{10}\)

\(=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}\right)^2-\sqrt{\frac{63}{10}}^2=\left(\sqrt{30}a+\frac{3}{\sqrt{30}}-\sqrt{\frac{63}{10}}\right)\left(\sqrt{30}a+\frac{3}{\sqrt{30}}+\sqrt{\frac{63}{10}}\right)\)

9 tháng 8 2020

\(Tacó\):   \(C=x^2+2xy+y^2+y^2-6y+15\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)

\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y

             \(\left(y-3\right)^2\ge0\)với mọi y

\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)

\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\

       

8 tháng 8 2020

Ta có C = (x2 + 2xy + y2) + (y2 - 6x + 9) + 6 

= (x + y)2 + (y - 3)2 + 6 \(\ge6>0\)(đpcm)

9 tháng 8 2020

C = x2 + 2xy + y2 + y2 - 6y + 15 

C = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) + 6

C = ( x + y )2 + ( y - 3 )2 + 6 ≥ 6 > 0 ∀ x ( đpcm )

D = x2 + y2 + 6x + 10y + 30

D = ( x2 + 6x + 9 ) + ( y2 + 10y + 25 ) - 4

D = ( x + 3 )2 + ( y + 5 )2 - 4 ≥ -4 ( xem lại đề nhớ )

14 tháng 3 2016

\(a.\)  Vì  \(x=14\)  \(\Rightarrow\)  \(x+1=15;\)  \(x+2=16;\)  \(2x+1=29;\)  và  \(x-1=13\)

Khi đó, biểu thức trên trở thành: 

\(x^5-15x^4+16x^3-29x^2+13x=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

                                                                     \(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

 \(x^5-15x^4+16x^3-29x^2+13x=-x=-14\) 

\(b.\)  Làm tương tự

                                                                     - Charlotte-