Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức trên = \(\frac{21.\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2}{2}\)\(-\frac{6.\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2}{2}\)\(-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3+2\sqrt{3}+1}+\sqrt{5-2\sqrt{5}+1}\right)^2}{2}-\frac{6.\left(\sqrt{3-2\sqrt{3}+1}+\sqrt{5+2\sqrt{5}+1}\right)^2}{2}-15\sqrt{15}\)
\(=\frac{21.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-\frac{6.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\) (đoạn này làm tắt)
\(=\frac{15.\left(\sqrt{3}+\sqrt{5}\right)^2}{2}-15\sqrt{15}\)\(=\frac{15.\left(8+2\sqrt{15}\right)}{2}-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Lời giải:
\(\sqrt{105}(\sqrt{\frac{15}{7}}-\sqrt{\frac{35}{3}}+\sqrt{\frac{21}{5}})=\sqrt{3.5.7}(\sqrt{\frac{3.5}{7}}-\sqrt{\frac{5.7}{3}}+\sqrt{\frac{3.7}{5}})\)
\(=\sqrt{(3.5)^2}-\sqrt{(5.7)^2}+\sqrt{(3.7)^2}=3.5-5.7+3.7=1\)
\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
\(a,\left(\sqrt{\sqrt{3}}\right)^4=3< 4=\left(\sqrt{2}\right)^4\Rightarrow\sqrt{\sqrt{3}}< \sqrt{2}\\ b,\left(\sqrt{2\sqrt{3}}\right)^4=12< 18=\left(\sqrt{3\sqrt{2}}\right)^4\Rightarrow\sqrt{2\sqrt{3}}=\sqrt{3\sqrt{2}}\\ c,\left(2+\sqrt{6}\right)^2=8+4\sqrt{6};5^2=25=8+17;\left(4\sqrt{6}\right)^2=96< 289=17^2\\ \Rightarrow4\sqrt{6}< 17\Rightarrow2+\sqrt{6}< 5\\ d,\left(7-2\sqrt{2}\right)^2=57-28\sqrt{2};4^2=16=57-41;\left(28\sqrt{2}\right)^2=1568< 41^2=1681\\ \Rightarrow28\sqrt{2}< 41\Rightarrow7-2\sqrt{2}>4\\ e,\left(\sqrt{15}+\sqrt{8}\right)^2=23+4\sqrt{30};7^2=49=23+26;\left(4\sqrt{30}\right)^2=240< 676=26^2\\ \Rightarrow4\sqrt{30}< 26\Rightarrow\sqrt{15}+\sqrt{8}< 7\)
\(f,\left(\sqrt{37}-\sqrt{14}\right)^2=51-2\sqrt{518};\left(6-\sqrt{15}\right)^2=51-12\sqrt{15};\left(2\sqrt{518}\right)^2=2072;\left(12\sqrt{15}\right)^2=2160\\ \Rightarrow2\sqrt{518}< 12\sqrt{15}\Rightarrow\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)
\(\sqrt{\left(8+\sqrt{15}\right)-\left(8-\sqrt{15}\right)}=\sqrt{8^2-\left(\sqrt{15}\right)^2}=\sqrt{64-15}=\sqrt{49}=7\)
\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{8-2\sqrt{3}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{8-2\sqrt{3}}\)
Bước \(\sqrt{5+2\sqrt{6}}\) mình dùng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) để tách ra. Nếu đúng bạn cho mình 1 đúng nhé =)
\(\sqrt{15+5\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(=\sqrt{15+\sqrt{125}}-\sqrt{3-\sqrt{5}}\)
Theo em nghĩ thì bài toán này nó tối giản rồi chứ nhỉ ??
đề là thế này à bạn:\(\sqrt{105}.\left(\sqrt{\frac{15}{7}}-\sqrt{\frac{37}{3}}+\sqrt{\frac{21}{5}}\right)\)
Ta có:\(\sqrt{105}.\left(\sqrt{\frac{15}{7}}-\sqrt{\frac{37}{3}}+\sqrt{\frac{21}{5}}\right)\)
\(=\sqrt{105}.\frac{\sqrt{15}.\sqrt{3}.\sqrt{5}-\sqrt{37}.\sqrt{7}.\sqrt{5}+\sqrt{21}.\sqrt{3}.\sqrt{7}}{\sqrt{3}.\sqrt{5}.\sqrt{7}}\)
\(=\sqrt{105}.\frac{\sqrt{225}-\sqrt{1295}+\sqrt{441}}{\sqrt{105}}\)
\(=\sqrt{225}-\sqrt{1295}+\sqrt{441}\)
\(=15+21-\sqrt{1295}\)
\(=36-\sqrt{1295}\)
Chúc bạn học tốt!